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Abstract

This is a set of notes for a statistics MS/PhD-level course in modern
Bayes theory and methods.
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1 Bayes Statistics: What? Why? A Worry ... ?
How?

In this initial qualitative introduction to Bayesian statistics, we’ll consider four
questions:

1. What is it?

2. Why use it?

3. What about a worry?

4. How does one implement it in practice?

1.1 What is Bayesian Statistics?

Standard probability-based statistical inference begins with (typically vector)
data Y modeled as an observable random vector/variable. The distribution
of Y is presumed to depend upon some (typically vector) parameter θ that is
unknown/unobservable, and potentially on some (typically vector) "covariate"
X that is observed. The object is often to make plausibility statements about
θ. Sometimes, one thinks of Y as comprised of two parts, that is

Y = (Y 1,Y 2)

where one first observes Y 1 and also needs to make plausibility statements about
Y 2.
In any case, one supposes that the θ distribution of Y is specified by some

probability density
f (y|θ;X) (1)

and this function then specifies an entire family of probability models for Y ,
one for each different θ. A couple of comments are in order regarding the form
(1). In the first place, f (y|θ;X) could be a probability density used to get
probabilities by doing "ordinary" Riemann integration over some part of <k,
or it could be a probability mass function used to get probabilities by adding
over some discrete set of points y, or it could be some combination of the two,
used to get probabilities by doing Riemann integration over some coordinates
of y while adding over values of the other coordinates of y. Secondly, since one
takes the values of the covariates as known/fixed, we will typically not bother
to display the dependence of (1) on X.
"Classical" statistical inference treats the density (with the observed data

y plugged in)
L (θ) ≡ f (y|θ)

as a (random) function of θ called the likelihood function and uses it alone
to guide inference/data analysis. Formally, "Bayes" statistical inference adds
to the model assumptions embodied in (1) a model assumption on θ, that says
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there is a density g (θ) that specifies a "prior" distribution for θ. This is
intended to describe a "pre-data" view of the parameter. It too can be a
probability density, a probability mass function, or a combination of the two.
(More generally, it can in some cases simply be a non-negative function of θ,
but more on that in a bit.)
In the standard/most easily understood case where g (θ) does specify a prob-

ability distribution for θ, the product

f (y,θ) = f (y|θ) g (θ)

specifies a joint distribution for (Y ,θ). This in turn means that the conditional
distribution of θ given Y = y is specified by the conditional density

g (θ|y) =
f (y,θ)∫
f (y,θ) dθ

(2)

(where the "integral" in the denominator of (2) is a Riemann integral, a sum,
or some combination of the two). Of course, the denominator of (2) is

fY (y) ≡
∫
f (y,θ) dθ

which is NOT a function of θ. Thus the posterior density g (θ|y) is a function
of θ proportional to

f (y|θ) g (θ) = L (θ) g (θ)

and Bayes statistical inference is based on the notion that it is this product that
should be the basis of plausibility statements about θ (and in the case that only
Y 1 = y1 is observed, that the product f (y1,y2|θ) g (θ) should be the basis of
all plausibility statements about Y 2 and/or θ).
Notice, that it is suffi cient but not always necessary that g (θ) be a den-

sity for the product f (y|θ) g (θ) to be proportional to a density for θ or for
f (y1,y2|θ) g (θ) to be proportional to a joint density for Y 2 and θ. That is,
sometimes g (θ) can fail to be a density because it has an infinite "integral" and
yet f (y|θ) g (θ) or f (y1,y2|θ) g (θ) be perfectly useful (after normalization) as
a density for θ or (Y 2,θ). In this case, it is common to say that g (θ) specifies
an "improper prior" (a prior "distribution" that has total mass not 1, but
rather ∞).
The Bayes Paradigm is then:

All plausibility statements about θ are based on a product

f (y|θ) g (θ) = L (θ) g (θ)

—and in the case that only Y 1 = y1 is observed, plausibility state-
ments about Y 2 and/or θ are based on a product

f (y1,y2|θ) g (θ)

— the first of which specifies a "posterior distribution" for θ, the
second of which specifies a joint predictive posterior/posterior dis-
tribution for (Y 2,θ).
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1.2 Why Use Bayesian Statistics?

There are at least 3 kinds of answers to the "why?" question concerning Bayes
statistical methods. These are

1. philosophical answers,

2. optimality/decision theoretic answers, and

3. pragmatic answers.

Real "card-carrying" philosophical Bayesians argue that the only rationally
coherent way of making statistical inferences is through the use of the Bayes
Paradigm. The early parts of most books on Bayes inference provide these
kinds of arguments. I’m not terribly interested in them. You should probably
have a look at one or two such discussions.
Optimality/decision theory arguments for Bayes methods are based on min-

imization of expected costs. That is, suppose that

• θ ∈ Θ, a parameter space,

• there are possible "actions" a ∈ A (an action space),

• associated with each pair (θ, a) there is some "loss" L (θ, a) ≥ 0, and

• actions may be chosen on the basis of Y ∼ f (y|θ) a distribution over
some observation space Y, that is, there are "decision rules" δ : Y → A

Then there are theorems that say things roughly like "Essentially only decision
rules δg (y) that for some prior specified by g have the form

δg (y) = an a minimizing
∫
L (θ, a) f (y|θ) g (θ) dθ (3)

can be any good in terms of

EθL (θ, δ (Y )) =

∫
L (θ, δ (y)) f (y|θ) dy ,

the expected loss function." Notice that
∫
L (θ, a) f (y|θ) g (θ) dθ is propor-

tional to the "posterior mean loss of action a," that is,∫
L (θ, a) f (y|θ) g (θ) d θ = fY (y)

∫
L (θ, a) g (θ|y) dθ

so δg (y) of the form (3) is an action that minimizes the (g) posterior expected
loss (and is called a "Bayes rule" for prior g).

As a bit of a digression, it’s worth noting that most philosophical Bayesians
do not like optimality arguments for Bayes procedures (or at least do not find
them compelling). This is because an expected loss EθL (θ, δ (Y )) involves an
integration/averaging over the observation space Y. A philosophical Bayesian
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would question the relevance of averaging over outcomes that one knows did
not occur ... that is, once Y = y is known, such a person would argue that the
only probability structure that is at all relevant is g (θ|y).
The third kind of answer to the "why?" question of Bayesian statistics is

purely pragmatic. The Bayesian paradigm provides an almost alarmingly sim-
ple and unified framework for statistical analysis. There is the model for the
data (the likelihood) and the prior that give a joint distribution for "everything"
(data, parameters, and future observations) that in turn gives a conditional (pos-
terior) for everything that is not observed given everything that is observed.
End of story. "All" one has to do is describe/understand/summarize the pos-
terior. All of statistical inference has been reduced to probability calculations
within a single probability model.
In contrast to "classical" statistics with its family of probability models

indexed by θ, and the seeming necessity of doing "custom development" of
methods for each different family and each different inference goal (estimation,
testing, prediction, etc.), Bayesian statistics takes essentially the same approach
to all problems of inference. (Bayesians might go so far as to say that while
there is a well-defined "Bayes approach" to inference, there really is no corre-
sponding classical or non-Bayesian "approach"!) Further, recent advances in
Bayesian computation have made it possible to implement sensible Bayes so-
lutions to statistical problems that are highly problematic when attacked from
other vantage points. These are problems with particularly complicated data
models, and especially ones where θ is of high dimension. For example, max-
imum likelihood for a 100-dimensional θ involves optimization of a function
of 100 variables ... something that (lacking some kind of very specific helpful
analytic structure) is often numerically diffi cult-to-impossible. In the same
problem, modern Bayesian computation methods can make implementation of
the Bayes paradigm almost routine.

1.3 A Worry ...?

Possibly the most worrisome feature of the Bayes paradigm is that the posterior
distribution specified by g (θ|y) (or g (θ, y2|y1)) of course depends upon the
choice of prior distribution, specified by g (θ). Change the form of the prior
and the final inferences change. This obvious point has long been a focal point
of debate between philosophical Bayesians and anti-Bayesians. Anti-Bayesians
have charged that this fact makes Bayes inferences completely "subjective" (a
serious charge in scientific contexts). Bayesians have replied that in the first
place "objectivity" is largely an illusion, and besides, the choice of prior is a
modeling assumption in the same class as the modeling choice of a likelihood,
that even anti-Bayesians seem willing to make. Anti-Bayesians reply "No, a
likelihood and a prior are very different things. A likelihood is something
that describes in probabilistic terms what reality generates for data. In theory
at least, its appropriateness could be investigated through repetitions of data
collection. Everyone admits that a prior exits only in one’s head. Putting
these two different kinds of things into a single probability model is not sensi-
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ble." Bayesians reply that doing so is the only way to be logically consistent in
inferences. And so the debate has gone ...
Two developments have to a large extent made this debate seem largely

irrelevant to most onlookers. In the first place, as the probability models that
people wish to use in data analysis have grown more and more complicated, the
distinction between what is properly thought of as a model parameter and what
is simply some part of a data vector that will go unobserved has become less
and less clear. To many pragmatists, there are simply big probability models
with some things observable and some things unobservable. To the extent that
"Bayes" methods provide a way to routinely handle inference in such models,
pragmatists are willing to consider them without taking sides in a philosophical
debate.
The second development is that Bayesians have put a fair amount of work

into the search for "flat" or "diffuse" or "objective" or "non-informative" or
"robust" priors (or building blocks for priors) that tend to give posteriors leading
to inferences similar to those of "classical"/non-Bayesian methods in simple
problems. The idea is then that one could then hope that when these building
blocks are used in complicated problems, the result will be inferences that are
"like" classical inferences and do not depend heavily on the exact forms used for
the priors, i.e. perform reasonably, regardless of what the parameter actually is.
(An extreme example of an "informative" prior lacking this kind of "robustness"
is one that says that with prior probability 1, θ = 13. The posterior distribution
of θ given Y = y says that with posterior probability 1, θ = 13. This is fine
as long as the truth is that θ ≈ 13. But if the prior is badly wrong, the Bayes
inference will be badly wrong.)

1.4 How Does One Implement the Bayesian Paradigm?

Conceptually, the Bayes paradigm is completely straightforward. Prior and
likelihood are "multiplied" to produce something proportional to the posterior.
Nothing could be simpler. But the practical problem is making sense of what
one ends with. The questions become "What does a distribution specified by

f (y|θ) g (θ) or f (y1,y2|θ) g (θ) (4)

look like? What are posterior probabilities that it specifies? What are (poste-
rior) means and standard deviations of the unobserved quantities?"
Except for very special circumstances where ordinary freshman/sophomore

pencil-and-paper calculus works, making sense of a posterior specified by (4) is a
matter of numerical analysis. But numerical analysis (particularly integration)
in any more than a very few (2 or 3) dimensions is problematic. (Asymp-
totic approximations are sometimes mentioned as a possible "solution" to this
computational problem. But that possibility is illusory, as large sample ap-
proximations for Bayes methods turn out to be fundamentally non-Bayesian
(the prior really washes out of consideration for large samples) and it is, after
all, the non-asymptotic behavior that is of real interest.) So it might seem

8



that the discussion has reached an impasse. While the paradigm is attractive,
actually using it to do data analysis seems typically impossible.
But there is another way. The basic insight is that one doesn’t have to

compute with form (4) if one can simulate from form (4). Armed with a
large number of realizations of simulations from a posterior, one can do simple
arithmetic to approximate probabilities, moments, etc. as descriptors of the
posterior. The first impulse would be to look for ways of drawing iid observa-
tions from the posterior. Sometimes that can be done. But by far the most
powerful development in Bayesian statistics has been methods for doing not iid
simulation from a posterior, but rather appropriate so-called "Markov Chain
Monte Carlo" simulation. This is finding and using a suitable Markov Chain
whose state space is the set of θ or (y2,θ) receiving positive posterior probabil-
ity and whose empirical distribution of states visited for long runs of the chain
approximates the posterior.
People with superior computing skills often program their own MCMC sim-

ulations. At the present time, the rest of us typically make use of a free Bayes
simulation package called WinBUGS/OpenBUGS. You are welcome to use any
means at your disposal to do computing in Stat 544. In practice, that is likely
to mean some combination of WinBUGS/OpenBUGS and R programming.

2 Some Simulation Methods Useful in Bayesian
Computation

There are a number of basic methods of generating realizations from standard
simple distributions discussed in Stat 542 that begin from the assumption that
one has available a stream of iid U(0, 1) realizations. For example, if U1, U2, . . .
are such iid uniform realizations

1. F−1 (U) for a univariate cdf F has distribution F ,

2. − ln (U) is exponential with mean 1,

3. max
[
integers j ≥ 0| −

∑j
i=1 ln (U) < λ

]
is Poisson(λ),

4. I [U < p] is Bernoulli(p),

5.
∑n
i=1 I [Ui < p] is Binomial(n, p),

6. Z1 =
√
−2 ln (U1) cos (2πU2) and Z2 =

√
−2 ln (U1) sin (2πU2) are iid

N(0, 1),

and so on.
In the following introductory discussion, we consider several much more gen-

eral simulation methods that are widely useful in Bayesian computation, namely

1. rejection sampling,
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2. Gibbs (or more properly, successive substitution) sampling,

3. slice sampling,

4. the Metropolis-Hastings algorithm, and

5. Metropolis-Hastings-in-Gibbs algorithms.

The last four of these are MCMC algorithms. Later in the course we will
discuss some theory of Markov Chains and why one might expect the MCMC
algorithms to work. This initial introduction will be simply concerned with
what these methods are and some aspects of their use.
Throughout this discussion, we will concern ourselves with simulation from

some distribution for a vector η that is specified by a "density" that is propor-
tional to a function

h (η)

We will not need to assume that h has been normalized to produce integral
1 and therefore already be a density. The fact that we don’t have to know
the integral of h (η) is an essential point for practical Bayes computation. In
Bayesian applications of this material, most often η will be either θ or (θ, Y 2),
the unknown parameter vector or the parameter vector and some future (pos-
sibly vector) observation and h (η) will be respectively either f (y|θ) g (θ) or
f (y1,y2|θ) g (θ) and computation of the integral may not be feasible.

2.1 The Rejection Algorithm

Suppose that I can identify a density p (η) (of the same type as a normalized
version of h (η)) from which I know how to simulate, and such that

1. p (η) = 0 implies that h (η) = 0 so that the distribution specified by p (η)
has support at least as large as that of the distribution specified by of
h (η), and

2. one knows a finite upper bound M for the ratio

h (η)

p (η)

(this is essentially a requirement that the p (η) tails be at least as heavy
as those for h (η) and that one can do the (pencil-and-paper or numerical)
calculus necessary to produce a numerical value for M).

Then it is a standard Stat 542 argument to establish that the following works
to produce η ∼ h (η) (we’ll henceforth abuse notation and write "∼" when we
mean that the variable on the left has a distribution with density proportional
to the function on the right):

1. generate η∗ ∼ p (η),
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2. generate U ∼U(0, 1) independent of η∗, and

3. if
h (η∗)

p (η∗)
≥ U ·M

then set η = η∗, otherwise return to step 1.

Notice that if I can use the rejection algorithm (repeatedly) to create iid
realizations η1,η2,η3, . . . ,ηN I can use (sample) properties of

the empirical distribution of η1,η2,η3, . . . ,ηN (5)

to approximate properties of the distribution specified by h (η).
An application of this algorithm most naturally relevant to Bayes calculation

is that where p (η) is g (θ) and h (η) is L (θ) g (θ). In this case the ratio
h (η∗) /p (η∗) is simply L (θ∗), and if one can bound L (θ) by some number M
(for example because an MLE of θ, θ̂, can be found and one can take M =

L
(
θ̂
)
), the rejection algorithm becomes:

Generate θ∗ (a "proposal" for θ) from the prior distribution and
accept that proposal with probability L (θ∗) /M , otherwise generate
another proposal from the prior ...

This may initially seem like a natural and general solution of the Bayes com-
putation problem. But it is not. Both in theoretical and operational terms,
there are problems where it is not possible to find a bound for the likelihood.
And more importantly (particularly in problems where θ is high-dimensional)
even when a bound for the likelihood can be identified, the part of the para-
meter space where the likelihood is large can be so "small" (can get such tiny
probability from the prior) that the acceptance rate for proposals is so low as to
make the algorithm unusable in practical terms. (A huge number of iterations
and thus huge computing time would be required in order to generate a large
sample of realizations.)
The nature of the typical failure of the rejection algorithm in high-dimensional

Bayes computation provides qualitative motivation for the MCMC algorithms
that can be successful in Bayes computation more generally. Rejection sam-
pling from a posterior would involve iid proposals that take no account of any
"success" earlier proposals have had in landing in regions where h (η) is large.
It would seem like one might want to somehow "find a place where h (η) is large
and move around in η-space typically generating realizations "near" or "like"
ones that produce large h (η)". This kind of thinking necessarily involves algo-
rithms that make realized η’s dependent. It is essential to the success of modern
Bayes analysis that there are ways other than iid sampling (like the next four
MCMC algorithms) to create (5) with sample properties approximating those
of the distribution specified by h (η).
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2.2 Gibbs (or Successive Substitution) Sampling

Suppose now that η is explicitly k-dimensional or is divided into k pieces/sub-
vectors (that may or may not each be 1-dimensional), that is, write

η = (η1, η2, . . . , ηk)

Then with some starting vector

η0 =
(
η01, η

0
2, . . . , η

0
k

)
for j = 1, 2, . . . a Gibbs sampler

1. samples ηj1 from h
(
·, ηj−12 , ηj−13 , . . . , ηj−1k

)
2. samples ηj2 from h

(
ηj1, ·, η

j−1
3 , . . . , ηj−1k

)
3. samples ηj3 from h

(
ηj1, η

j
2, ·, η

j−1
4 , . . . , ηj−1k

)
...

(k − 1). samples ηjk−1 from h
(
ηj1, η

j
2, . . . , η

j
k−2, ·, η

j−1
k

)
, and

k. samples ηjk from h
(
ηj1, η

j
2, . . . , η

j
k−1, ·

)
in order to create ηj from ηj−1.
Under appropriate circumstances, for large N , at least approximately

ηN ∼ h (6)

and theoretical properties of the h distribution can be approximated using sam-
ple properties of {

ηB+1,ηB+2, . . . ,ηN
}

(7)

(for B a number "burn-in" iterations disregarded in order to hopefully mitigate
the effects of an unfortunate choice of starting vector).
Use of this algorithm requires that one be able to make the random draws

indicated in each of the steps 1 through k. This is sometimes possible because
the indicated "sections" of the function h (h with all but one ηl held fixed) are
recognizable as standard densities. Sometimes more clever methods are needed,
like use of rejection algorithm or the "slice sampling" algorithm we will discuss
next.
Why one might expect the "Gibbs sampler" to work under fairly general

circumstances is something that we will discuss later in the term, as an appli-
cation of properties of Markov Chains. For the time being, I will present a
very small numerical example in class, and then point out what can "go wrong"
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in the sense of (6) failing to hold and the empirical properties of (7) failing to
approximate properties of h.
The principle failings of the Gibbs sampler occur when there are relatively

isolated "islands of probability" in the distribution described by h, leading to
"poor mixing" of the record of successive ηj’s. Tools for detecting the possibility
that the output of the Gibbs algorithm can’t be trusted to represent h include:

1. making and comparing summaries of the results for several "widely dis-
persed" starts for the algorithm (different starts producing widely different
results is clearly a bad sign!),

2. making and interpreting "history plots" and computing serial correlations
for long runs of the algorithm (obvious jumps on the history plots and
important high order serial correlations suggest that the Gibbs output
may not be useful), and

3. the Brooks-Gelman-Rubin statistic and corresponding plots.

As the term goes along, we will discuss these and some of their applications.
At this point we only note that all are available in WinBUGS/OpenBUGS.

2.3 Slice Sampling

The Gibbs sampling idea can be used to sample from a 1-dimensional continuous
distribution. In fact, WinBUGS seems to use this idea (called "slice sampling")
to do its 1-dimensional updates for non-standard distributions of bounded sup-
port (i.e. where the density is 0 outside a finite interval). The "trick" is that
in order to sample from a 1-dimensional

h (η)

I implicitly invent a convenient 2-dimensional distribution for (η, V ) and do
what amounts to Gibbs sampling from this distribution to produce(

η0, V 0
)
,
(
η1, V 1

)
,
(
η2, V 2

)
, . . . ,

(
ηN , V N

)
and then for large N use ηN as a simulated value for η.

The slice sampling algorithm begins with some starting vector(
η0, V 0

)
and then for j = 1, 2, . . . one

1. samples ηj from a distribution uniform on
{
η|h (η) ≥ V j−1

}
, and

2. samples V j from the Uniform
(
0, h

(
ηj
))
distribution
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in order to create
(
ηj , V j

)
from

(
ηj−1, V j−1

)
.

Slice sampling is the Gibbs sampler on a distribution that is uniform on

{(η, v) |v < h (η)} ⊂ <2

The only diffi cult part of implementing the algorithm is figuring out how to
accomplish step 1. Sometimes it’s possible to do the algebra necessary to
identify the set of η’s indicated in step 1. When it is not, but I know that
h (η) is positive only on a finite interval [a, b], I can instead generate iid U(a, b)
realizations, checking the corresponding values of h until I get one larger than
V j−1.
It is worth noting that at least in theory (whether the following is practically

effi cient is a separate question), the restriction of slice sampling to cases where
h (η) is known to be positive only on a finite interval [a, b] is not really intrinsic.
That is, one may define a smooth strictly monotone transformation γ : < →
(0, 1), use slice sampling to sample from the distribution γ (η), and then apply
the inverse transform to get realizations of η from h (η). Take, for example, the
transformation

γ (η) =
1

1 + exp (−η)

with inverse transformation

γ−1 (t) = − ln

(
1

t
− 1

)
= ln

(
t

1− t

)
that has derivative

d

dt
γ−1 (t) =

1

t (1− t)
If η has pdf proportional to h (η), then γ (η) has pdf on (0, 1) proportional to
the function of t

h
(
γ−1 (t)

)
t (1− t) (8)

and one can do slice sampling for γ (η) as indicated above based on (8) and
apply γ−1 to the result to simulate from h.

Together, the rejection algorithm and slice sampling (each with its own lim-
itations) make two ways of implementing one of the k Gibbs updates for the
common cases where the indicated density is not one of a standard form (i.e. is
not one for which simulation methods are well known).

2.4 The Metropolis-Hastings Algorithm

A second basic MCMC algorithm alternative to or complementary to the Gibbs
algorithm is the so-called Metropolis-Hastings algorithm. It begins from some
starting vector η0. Then for j = 1, 2, . . .
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1. let Jj (η′|η) specify for each η a distribution (for η′) over the part of
Euclidean space where h (η′) > 0, called the "jumping" or "proposal"
distribution for the jth iteration of updating (a distribution that I know
how to simulate from), and generate

ηj∗ ∼ Jj
(
·|ηj−1

)
as a proposal or candidate for ηj ,

2. compute

rj =
h
(
ηj∗
)
/Jj

(
ηj∗|ηj−1

)
h (ηj−1) /Jj (ηj−1|ηj∗)

and generate
Wj ∼ Bernoulli (min (1, rj))

and,

3. take
ηj = Wjη

j∗ + (1−Wj) η
j−1

(i.e. one jumps from ηj−1 to the proposal ηj∗ with probability min (1, rj)
and otherwise stays put at ηj−1).

In contrast to the Gibbs algorithm, this algorithm has the great virtue of
requiring only simulation from the proposal distribution (and not from non-
standard conditionals of h). These can be chosen to be "standard distributions"
with well-known fast simulation methods
The situation where each

Jj (η′|η) = Jj (η|η′)

(i.e. the jumping distributions are symmetric) is especially simple and gives the
variant of the algorithm known simply as the "Metropolis Algorithm." Note too
that the proposal distributions may depend upon the iteration number and the
current iterate, ηj−1. Strictly speaking, they may not depend upon any more
of the history of iterates beyond ηj−1. However, it is very common practice
to violate this restriction early in a run of an MCMC algorithm, letting the
algorithm "adapt" for a while before beginning to save iterates as potentially
representing h. The idea of this tuning of the algorithm early in a run is to
both "get from the starting vector to the ‘important part of the distribution’"
and to "tune the parameters of the jumping distributions to make the algorithm
effi cient" (i.e. make the rj’s tend to be large and create frequent jumps).

2.5 Metropolis-Hastings-in-Gibbs Algorithms

The Gibbs sampler is attractive in that one can use it to break a large sim-
ulation problem down into small, manageable chunks, the updating of the k
subvectors/pieces of η. It requires, however, methods of sampling from each of
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the (h) conditional distributions of an ηl given the rest of the η vector. This
requires the recognition of each conditional as of some convenient parametric
form, or the use of the rejection or slice sampling algorithm, or yet something
else. Sometimes it’s not so easy to find a suitable method for sampling from
each of these conditionals.
The Metropolis-Hastings algorithm does not require sampling from any dis-

tribution defined directly by h, but rather only from proposal distributions that
the analyst gets to choose. But, at least as described to this point, it seems that
one must deal with the entirety of the vector η all at once. But as it turns out,
this is not necessary. One may take advantage of the attractive features of both
the Gibbs and Metropolis-Hastings algorithms in a single MCMC simulation.
That is, there are Metropolis-Hastings-in-Gibbs algorithms.
That is, in the Gibbs sampling setup, for the update of any particular sub-

vector ηl, one may substitute a "Metropolis-Hastings step." In place of

sampling ηjl from h
(
ηj1, . . . , η

j
l−1, ·, η

j−1
l+1 , . . . , η

j−1
k

)
one may

1. let Jlj
(
η′l|η1, . . . , ηl−1, ηl, ηl+1, . . . , ηk

)
specify for each

(
η1, . . . , ηl−1, ηl, ηl+1, . . . , ηk

)
a distribution (for η′l) over the part of Euclidean space where the function
of η′l, h

(
η1, . . . , ηl−1, η

′
l, ηl+1, . . . , ηk

)
> 0, and generate

ηj∗l ∼ Jlj
(
·|ηj1, . . . , η

j
l−1, η

j−1
l , ηj−1l+1 , . . . , η

j−1
k

)
as a proposal or candidate for ηjl ,

2. compute

rlj =
h
(
ηj1, . . . , η

j
l−1, η

j∗
l , η

j−1
l+1 , . . . , η

j−1
k

)
h
(
ηj1, . . . , η

j
l−1, η

j−1
l , ηj−1l+1 , . . . , η

j−1
k

)
×
Jlj

(
ηj−1l |ηj1, . . . , η

j
l−1, η

j∗
l , η

j−1
l+1 , . . . , η

j−1
k

)
Jlj

(
ηj∗l |η

j
1, . . . , η

j
l−1, η

j−1
l , ηj−1l+1 , . . . , η

j−1
k

)
and generate

Wlj ∼ Bernoulli (min (1, rlj))

and,

3. take
ηjl = Wljη

j∗
l + (1−Wlj) η

j−1
l

(i.e. one jumps from ηj−1l to the proposal ηj∗l with probability min (1, rlj)

and otherwise stays put at ηj−1l ).

This kind of algorithm is probably the most commonly used MCMC algo-
rithm in modern Bayesian computation, at least where people do their own
programming instead of relying on WinBUGS/OpenBUGS.
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3 The Practice of Modern Bayes Inference 1:
Some General Issues

We now take for granted computing algorithms for approximating a posterior
distribution via MCMC and consider a series of issues in the practical application
of the Bayes paradigm.

3.1 MCMC Diagnostics

For purposes of being in a position to detect whether there are potentially
problems with "poor mixing"/"islands of probability" in a MCMC simulation
from a posterior (or posterior/predictive posterior) distribution, it is standard
practice to:

1. pick several widely dispersed and perhaps even "unlikely under the poste-
rior" starting vectors for posterior MCMC iterations,

2. run several (say m) chains in parallel from the starting points in 1.,

3. monitor these several chains until "transient" effects of the starting vectors
wash out and they start to have "similar" behaviors, i.e. monitor them
until they "burn in," and

4. use for inference purposes only simulated θ and/or Y 2 values coming from
iterations after burn-in.

The question is how one is to judge if and when burn-in has taken place.
A fairly qualitative way of trying to assess burn-in is to visually monitor

"history plots" (of all parallel chains on a given plot) of individual coordinates
of θ and/or Y 2. (These are simply plots of values of the coordinate against
iteration number, with consecutive points for a given chain connected by line
segments.) WinBUGS/OpenBUGS allows one to run multiple chains and make
such plots with each chain getting a different color on the plot. One simply
waits until these look "alike" to the statistically practiced eye.
A more or less quantitative tool for judging when burn-in has occurred is the

"Gelman-Rubin statistic" and related plots, implemented in WinBUGS/OpenBUGS
in a variant form called the "BGR" (Brooks-Gelman-Rubin) statistic and plots.
The original version of the idea (discussed in the textbook) is the following. Let
ψ stand for some coordinate of θ and/or Y 2 (possibly after "transformation to
normality"). Beginning after some number of iterations of MCMC simulations,
let

ψji = jth saved iterate of ψ in chain i for i = 1, 2, . . . ,m and j = 1, 2, . . . , n

If burn-in has occurred, I expect that the set of ψji obtained from each chain
i will "look like" the set of ψji obtained from pooling across all chains. Ways
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of measuring the extent to which this is true can be based on within-chain and
grand means

ψi =
1

n

n∑
j=1

ψji and ψ. =
1

m

m∑
i=1

ψi

and within-chain sample variances and a pooled version of these

s2i =
1

n− 1

n∑
j=1

(
ψji − ψi

)2
and W =

1

m

m∑
i=1

s2i

and a kind of between-chain variance

B =
n

m− 1

m∑
i=1

(
ψi − ψ.

)2
W and B are, in fact, respectively the "One-Way ANOVA" error and treatment
(within and between) mean squares from a One-Way analysis with "chains" as
"treatments." The Gelman-Rubin statistic based on these quantities is

R̂n =

√
n− 1

n
+

1

n

(
B

W

)
If each chain’s record begins to "look like" a random sample from the same
distribution as n → ∞, R̂n should approach 1. If the records of the m chains
"look different" one should expect R̂n to stay larger than 1 with increasing n.
(One plots R̂n against n.) (Note also in passing that the ratio B/W is exactly
the one-way ANOVA F statistic for this problem.)
The Brooks-Gelman modification of this idea implemented in WinBUGS/OpenBUGS

is as follows. Let

Lni = the lower 10% point of the n values ψji (from chain i)

Uni = the upper 10% point of the n values ψji (from chain i)

Ln = the lower 10% point of the nm values ψji (from all chains)

Un = the upper 10% point of the nm values ψji (from all chains)

Then plotted versus n in WinBUGS/OpenBUGS are 3 quantities:

1. (Un − Ln) /κ plotted in green,

2.
(
1
m

∑m
i=1 (Uni − Lni )

)
/κ plotted in blue, and

3. (Un − Ln) /
(
1
m

∑m
i=1 (Uni − Lni )

)
plotted in red.

The idea is that the value in red needs to approach 1 and the values plotted in
green and blue need to stabilize. The constant κ used in 1. and 2. is chosen to
make the largest plotted green or blue plotted value 1. The WinBUGS/OpenBUGS
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manual says that "bins of 50 are used" and I believe that this means that the
computation and plotting is done at multiples of 50 iterations.
Ideally, properly burned-in history plots look like patternless "white noise"

(iid observations) plots. When instead they show (similar across the chains)
behavior that might be characterized as "slow drift" one is faced with a situation
where long MCMC runs will be necessary if there is any hope of adequately
representing the posterior. In some sense, one has many fewer "observations"
from the posterior than one has iterations. A "slowly drifting MCMC record"
means that values of a coordinate of θ and/or Y 2 change only slowly. This can
be measured in terms of how fast serial correlations in the MCMC records fall off
with lag. For example, suppose θ1 is the first coordinate of the parameter vector
θ and that the jth MCMC iterate of this variable is θj1. One might compute
the sample correlation between the first and second coordinates of ordered pairs(

θj1, θ
j+s
1

)
for s = 1, 2, 3, . . . (for j after burn-in) as a measure of "lag-s serial correlation"
in the θ1 record. Nontrivial positive serial correlations for large s are indicative
of "slow drift"/"poor mixing" in the simulation and the necessity of long runs
for adequate representation of the posterior.

3.2 Considerations in Choosing Priors

How does one choose a prior distribution? The answer to this question is
obviously critical to Bayes analysis, and must be faced before one can even "get
started" in an application. A couple of points are obvious at the outset. In the
first place, a posterior can place probability on only those parts of a parameter
space where the prior has placed probability. So unless one is absolutely "sure"
that some subset of θ’s simply can not contain the actual parameter vector,
it is dangerous to use a prior distribution that ignores that set of parameters.
(Unless I am willing to take poison on the proposition that θ < 13, I should not
use a prior that places 0 probability on the event that θ ≥ 13.) Secondly, all
things being equal, if several different choices of prior produce roughly the same
posterior results (and in particular, if they produce results consistent with those
derivable from non-Bayesian methods) any of those priors might be thought of
as attractive from a "robustness" perspective.

3.2.1 "The Prior"

A real philosophical Bayesian would find the previous statement to be heretical-
to-irrelevant. That is, for a card-carrying Bayesian, there is only one "true"
prior, that reflects his or her carefully considered prior opinions about θ. This
probability structure is unashamedly personal and beyond criticism on any other
than logical or philosophical grounds. Bayesians have put a fair amount of
effort into developing theory and tools for the "elicitation of prior beliefs" and
would argue that the way one ought to get a prior is through the careful use

19



of these. While this logical consistency is in some respects quite admirable,
I am unconvinced that it can really be pushed this far in a practical problem.
However, you are invited to investigate this line of thought on your own. We
will take more eclectic approaches in this set of notes.

3.2.2 Conjugate Priors

Before the advent of MCMC methods, there was a particular premium placed on
priors for which one can do posterior calculations with pencil-and-paper calcu-
lus, and "conjugate" priors were central to applications of the Bayes paradigm.
That is, some simple forms of the likelihood L (θ) = f (y|θ) themselves look
like all or parts of a density for θ. In those cases, it is often possible to identify
a simple prior g (θ) that when multiplied by L (θ) produces a function that by
simple inspection can be seen to be "of the same family or form as g (θ)." (For
example, a Binomial likelihood multiplied by a Beta prior density produces a
product proportional to a different Beta density.) When this is the case and
the form of g (θ) is simple, posterior probability calculations can be done with-
out resort to MCMC simulation. The jargon for this kind of nice interaction
between the form of a likelihood and a convenient prior form is that the prior
is a "conjugate" prior.
These days, conjugate priors are important not so much because they are

the only ones for which posterior computations can be done (MCMC methods
have removed the necessity of limiting consideration to posteriors that yield to
pencil-and-paper calculus), but rather because the explicit formulas that they
can provide often enlighten the search for priors that are minimally informa-
tive/robust. In fact, many useful "non-informative" prior distributions can be
seen to be limits (as one sends parameters of a prior to some extreme) of con-
jugate priors. (For example, where the elements of Y are iid N(µ, 1) variables,
one conjugate prior for µ is the N

(
0, σ2

)
distribution, and in some sense the

"limit" of this prior as σ2 →∞ is the "uniform on <" improper prior. This is
in many respects an attractive non-informative choice for this problem.)

3.2.3 "Flat"/"Diffuse"/"Non-Informative"/"Robust" Priors

The notions of prior "diffuseness," "flatness," and "non-informativeness"/"robustness"
are not really terribly concrete concepts. What one hopes to achieve in the
search for priors that might be described in these ways is fairly clear: posterior
distributions that behave sensibly no matter what be θ. But it is worth saying
explicitly here, that whether a prior "looks" flat or diffuse is dependent upon
the particular parameterization that one adopts, and thus whether a flat/diffuse
choice of prior will function in a robust/non-informative way is not obvious from
simply examining its shape.
For example, consider a hypothetical inference problem with parameter p ∈

(0, 1). One "flat"/"diffuse" prior for a Bayes problem involving p would be a
U(0, 1) prior for p. But an alternative parameterization for the problem might
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be in terms of the log-odds

γ = ln

(
p

1− p

)
and a "flat" improper prior for γ is "uniform on <." These are not equivalent
specifications. For example, the first says that the prior probabilities assigned
to the intervals (.5, .6) and (.6, .7) are the same, while the second says that the
(improper) prior weights assigned to these sets of p’s are in the ratio

ln
(

.6
1−.6

)
− ln

(
.5
1−.5

)
ln
(

.7
1−.7

)
− ln

(
.6
1−.6

) = .9177

Whether either of these priors will function in a "non-informative" way in a
Bayes analysis is not obvious from their qualitative "flatness"/"diffuseness" ev-
ident from simple inspection.

3.2.4 Jeffreys Priors

In the case that θ is 1-dimensional, there is a standard method due to H. Jef-
freys for identifying a prior (or improper prior) that often turns out to be oper-
ationally "non-informative." That is this. Associated with a likelihood f (y|θ)
(differentiable in θ) is the Fisher Information (a function of θ)

IY (θ) = Eθ

(
d

dθ
ln f (Y |θ)

)2
It is well known that sometimes (but not always) the Fisher Information may
also be computed as

−Eθ
d2

dθ2
ln f (Y |θ)

In any case, the Jeffreys prior for a Bayes analysis involving this likelihood is
specified by

g (θ) ∝
√
IY (θ) (9)

An especially attractive feature of this prescription is that it is invariant to
monotone reparameterization. So one may speak of "the" Jeffreys prior for the
problem without ambiguity. That is, for a monotone function u (θ), consider a
second parameterization of this problem with parameter

γ = u (θ)

With prior (say) pdf (9), Stat 542 transformation theorem material shows that
γ has pdf proportional to√

IY (u−1 (γ))

∣∣∣∣ 1

u′ (u−1 (γ))

∣∣∣∣ (10)
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But the information in y about γ is (for ḟ (Y |θ) the partial derivative of f (Y |θ)
with respect to θ)

Eu−1(γ)

(
d

dγ
ln f

(
Y |u−1 (γ)

))2
= Eu−1(γ)

(
ḟ
(
Y |u−1 (γ)

)
∂
∂γu

−1 (γ)

f (Y |u−1 (γ))

)2
= IY

(
u−1 (γ)

) 1

(u′ (u−1 (γ)))
2 (11)

Clearly, the square root of rhs(11) is the pdf (10) that γ inherits from the
assumption (9) that θ has a Jeffreys prior.

3.3 Considerations in Choice of Parametrization

The necessity of specifying a prior distribution for θ and then sampling from a
posterior for it probably causes one to think harder about the most convenient
way to parameterize a model for Y than might otherwise be necessary. We
proceed to make several observations about the issue of parameterization.

3.3.1 Identifiability

A basic requirement for sensible inference, Bayesian or non-Bayesian, is that
any two different parameter vectors θ and θ′ correspond to genuinely different
distributions for Y . But it is not impossible to fail to recognize that one has
violated this basic sanity requirement. When this happens, MCMC simulations
can behave in seemingly inexplicable ways.
For example, consider a mixture problem, where one is presented with iid

observations, which each are N(µ1, 1) with probability α and N(µ2, 1) with prob-
ability (1− α). As just stated (with the implicit choice of parameter space
<×<× (0, 1) for (µ1, µ2, α)) this model is not identifiable. The parameter vec-
tors (0, 1, .7) and (1, 0, .3) produce the same distribution for the data. MCMC
for "obvious" choices of prior in this problem will behave in what seems to
be "odd" ways. One needs to somehow either reduce the parameter space to
something like

{(µ1, µ2, α) |µ1 < µ2 and 0 < α < 1} (12)

and place a prior on that subset of <3 or find an alternative parameterization.
For example, one might think of

µ1 = the smaller of the two means

and set
δ = µ2 − µ1

(so that µ2 = µ1 + δ) and do the inference in terms of (µ1, δ, α) rather than
(µ1, µ2, α) directly. Note then that the parameter space becomes <× (0,∞)×
(0, 1) and that choosing a prior over this space seems less complicated than
making a choice of one over (12).
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3.3.2 Gibbs and Posterior Independence

In terms of effi ciency/properly representing a posterior in as few iterations as
possible, Gibbs-like algorithms work best when the subvectors of θ being up-
dated in turn are (according to the posterior) roughly independent. When
the posterior portrays strong dependencies, the range of each update is in ef-
fect limited substantially by the dependence, and Gibbs algorithms tend to take
very small steps through the parameter space and thus take a large number of
iterations to "cover the parameter space" adequately.
This means that all other things being equal, for purposes of effi cient com-

putation, one prefers parameterizations with product parameter spaces, and
that tend to produce likelihoods that as functions of θ do not contribute to
posterior dependencies. (To the extent that large sample loglikelihoods tend
to be approximately quadratic with character determined by the corresponding
Fisher information matrix, one prefers parameterizations with essentially diag-
onal Fisher information matrices.) And again for purposes of computational
effi ciency (at least if a prior is not going to be effectively "overwhelmed" by
a "large sample" likelihood) priors of independence for such parameterizations
seem most attractive.
This discussion suggests that at least from a computational standpoint, the

parameter space (12) discussed above is less attractive than the < × (0,∞) ×
(0, 1) product space associated with the second ((µ1, δ, α)) parameterization. A
second, very familiar, example relevant to this discussion is that of simple linear
regression. The simple linear regression Fisher information matrix typically fails
to be diagonal in the usual parameterization where the regression coeffi cients are
the slope and y intercept (the mean value of y when x = 0). However, if instead
of using raw values of covariates one centers them so that regression coeffi cients
become the slope and the mean value of the response when the covariate is at its
sample mean value (x̄), this potential computational complication disappears.

3.3.3 Honoring Restrictions Without Restricting Parameters

The most convenient/straightforward way of specifying a high-dimensional prior
distribution is by making an independence assumption and specifying only mar-
ginal distributions for coordinates of θ on some product space. That makes
parameter spaces like (12) that involve some restrictions in a product space
problematic. There are at least 2 ways of getting around this unpleasant-
ness. First, one might look for alternate parameterizations that simply avoid
the diffi culty altogether. (In the mixture example, this is the approach of us-
ing (µ1, δ, α) instead of the original (µ1, µ2, α) parameterization.) A second
possibility (that might not work in the mixture problem, but will work in other
contexts) is to ignore the restrictions and use a prior of independence on a prod-
uct space for purposes of running an MCMC algorithm, but to "post-process"
the MCMC output, deleting from consideration vectors from any iteration whose
vector violates the restrictions. For example, in a problem where a parameter
vector (p1, p2, p3) ∈ (0, 1)

3 must satisfy the order restriction p1 ≤ p2 ≤ p3, one
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might adopt and use in an MCMC algorithm independent Beta priors for each
pi. After-the-fact using only those simulated values whose vectors (p1, p2, p3)
satisfy the order restrictions essentially then employs a prior with density pro-
portional to the product of Beta densities but restricted to the part of (0, 1)

3

where the order restriction holds. (Using WinBUGS/OpenBUGS and R this can
be accomplished by saving the WinBUGS/OpenBUGS results using the coda op-
tion, turning them into a text file, and loading the text file into R using the
coda package for post-processing.)

3.4 Posterior (Credible) Intervals

A posterior distribution for θ (or for (Y 2,θ)) is often summarized by making
representations of the corresponding marginal (posterior) distributions. For
sake of discussion here, let η stand for some 1-dimensional element of θ (or
(Y 2,θ)). Upon finishing an MCMC simulation from a posterior one has a
large number of realizations of η, say η1, η2, . . . , ηN . These can be summarized
in terms of a histogram, or in the case that η is a continuous variable, with some
kind of estimated probability density (WinBUGS/OpenBUGS provides such density
estimates). It is also common to compute and report standard summaries of
these values, the sample mean, sample median, sample standard deviation, and
so on.
Probably the most effective way of conveying where most of the posterior

probability is located is through the making and reporting of posterior proba-
bility intervals, or so-called Bayesian "credible intervals." The simplest of these
are based on (approximate) quantiles of the marginal posterior. That is, if

η.025 = the .025 quantile of
{
η1, η2, . . . , ηN

}
and

η.975 = the .975 quantile of
{
η1, η2, . . . , ηN

}
then the interval

[η.025, η.975]

encloses posterior probability .95 (at least approximately) and can be termed a
95% credible interval for η. It might be thought of as a Bayes alternative to a
"classical" 95% confidence interval (though there is no guarantee at all that the
method that produced it is anything like a 95% confidence procedure).
A theoretically better/smaller construction of credible sets is the "highest

posterior density" (hpd) construction. That is, rather than using quantiles to
identify a credible interval, one might look for a number c so that with g (η|y)
the posterior marginal density of η, the set

{η|g (η|y) > c} (13)

has posterior probability .95. That set is then the smallest one that has poste-
rior probability content .95, and can be called the "95% highest posterior density
credible set for η."
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Unless g (η|y) is unimodal, there is no guarantee that the hpd construction
will produce an interval. And unless g (η|y) has a simple analytic form, it
may not be easy to identify the set (13). Further, while the use of quantiles
to make credible intervals is invariant under monotone transformations of the
parameter, the result of using the hpd construction is not. (This is really
a manifestation of the same phenomenon that makes apparent "flatness" of a
prior dependent upon the particular parameterization one adopts.) For these
reasons, the quantile method of producing intervals is more common in practice
than the hpd construction.

3.5 Bayes Model Diagnostics, Checking, and Comparison

Since a Bayes statistical model is simply an "ordinary" statistical model with
the addition of a prior g (θ), any kind of "model checking"/diagnostics and
model comparison appropriate in a non-Bayesian context is equally appropriate
in the Bayes context. The new feature present in the Bayes context is what
the prior does.

3.5.1 Bayesian Residuals

Residual analysis (graphical and numerical) is standard fare in ordinary statis-
tical regression models, were residuals are

ei = yi − ŷi

for
ŷi = f

(
xi, β̂

)
some parametric mean function f (Eβy = f (x,β)) and estimated parameter
vector β̂. Bayesian versions of residuals might be had by using for β̂ a parameter
vector that is

1. a single β from the posterior distribution, or

2. the relevant part of θ̂ = arg max
θ

g (θ|y).

The text seems to emphasize the first of these two possibilities (probably because
a posterior mode need not be easy to find in practical terms).

3.5.2 Sensitivity Analyses

Bayesian or non-Bayesian, it is a good idea to know what features of a set of
model assumptions have the strongest influence upon one’s inferences. It is thus
a good idea to make a number of analyses, varying parts of one’s assumptions
across an appropriate spectrum of possibilities, and seeing how the inferences
change in response to perturbation of model assumptions. Specifically in a
Bayesian context, varying forms and/or parameters of prior distributions and
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seeing what happens to posteriors for parameters and predictions is a standard
and important way of assessing how strongly prior assumptions are reflected
in the analysis and whether a particular choice of prior is one producing an
"unusual" set of inferences, at least as judged in comparison to the suite of
choices considered.

3.5.3 Posterior Predictive Checking

Specifically Bayesian model checking is usually approached from the point of
view of "posterior predictive distribution checking." That is, if the density of
the observable Y is

f (y|θ)

let Y new also have this density and (conditional on θ) be independent of the
observable Y . So the joint density of all of (Y ,Y new ,θ) is proportional to

f (y|θ) f (ynew |θ) g (θ)

and one can make posterior (to Y = y) simulations of Y new . One can then ask
whether the data in hand, y, look anything like the simulated values, or perhaps
more effectively whether some 1-dimensional statistics T (y) look anything like
the simulations of the T (Y new). Roughly, if an observed T (y) is not in the
central part of the T (Y new) distribution, there is reason to worry about the
Bayes analysis. Chapter 6 of the text discusses some ways of assessing this
numerically and graphically (and could, for example, include examination of
statistics T quantifying the plausibility of a set of residuals). (This program
strikes me as inherently "stacked in favor of concluding that the Bayes analysis
is OK." Roughly speaking, the posterior uncertainty in θ will have the effect
of making the posterior predictive distribution of Y new more spread out than
any single f (y|θ) for a fixed θ. So it seems rare that one will get posterior
predictive simulations that fail to "cover" the observed data, unless there is
some huge blunder in the modeling or simulation. But then, I suppose that is
all one can hope to avoid, huge blunders of modeling.)

3.5.4 Model Comparison Tools: DIC and Bayes Factors

A somewhat different question is how one might compare the appropriateness
of several (either nested or un-nested) Bayes models for an observable Y . The
"D
¯
eviance I

¯
nformation C

¯
riterion" and so called "Bayes Factors" have been of-

fered as tools for doing this.

DIC The so-called deviance for a model f (·|θ) and observation y is

D (y,θ) = −2 ln f (y|θ) = −2 lnL (θ)

(a function of the parameter, −2 times the log-likelihood). This is sometimes
treated as a measure of discrepancy between the model and the data, and is
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minimized by a maximum likelihood estimate of θ, θ̂MLE = arg max
θ

L (θ). In

this regard, the quantity

D (y) ≡ D
(
y, θ̂MLE (y)

)
(14)

might then be used as a frequentist index of how close one can get to the data in
the model class f (·|θ). A standard (justifiable) criticism of this thinking is that
the quantity (14) tends to be optimistic as a measure of model (versus data)
discrepancy, involving as it does a choice of parameter that is surely "better"
in terms of fit than any that actually generate data y.
A Bayesian alternative to criterion (14) might be to average D (y,θ) accord-

ing to the posterior distribution of θ, that is

Dg (y) ≡
∫
D (y,θ) g (θ|y) dθ = −2

∫
(lnL (θ)) g (θ|y) dθ

(roughly a posterior average log-likelihood). Armed with iterates θ1,θ2, . . . ,θn

of the parameter from some appropriate simulation method, the empirical av-
erage

D̂g (y) =
1

n

n∑
l=1

D
(
y,θl

)
=
−2

n

n∑
l=1

lnL
(
θl
)

can be counted on to approximate this Bayesian average. GCSR point out
that this can be thought of as a kind of posterior predictive check statistic (that
might be used to compare models rather than check fit of a particular model).
Asymptotic arguments for one-sample models can be used to justify the

measure
p1D (y) ≡ D̂g (y)−D (y)

as an estimated "effective number of parameters" in a Bayesian model. Similar
asymptotics lead to a second measure (that is itself an estimate of 12 the posterior
variance of D (y,θ))

p2D (y) ≡ 1

2

1

n− 1

n∑
l=1

(
D
(
y,θl

)
− D̂g (y)

)2
as estimating the same "effective number of parameters." The second full para-
graph of page 182 of GCSR provides an interesting interpretation of this number.
As the authors go on to say, the values pD (y) represent an estimate of the av-
erage decrease in deviance (improvement in fit) associated with fitting model
parameters.
The so-called deviance information criterion is then

DIC (y) ≡ 2D̂g (y)−D (y) = D̂g (y) + p1D (y)

This attempts to penalize both posterior average deviance and effective num-
bers of parameters, and intends to be an estimate of the posterior mean of

D
(
y∗, θ̂MLE (y)

)
for y∗ a version of the data taken from a posterior predictive

distribution. One looks then for a low value of DIC (y) as indicating good fit
to the data in hand for a Bayesian model.
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Bayes Factors Suppose m different models have densities fi (y|θi) of the
same type, where the parameters θi take values (in possibly different) ki-
dimensional Euclidean spaces, <ki , and priors are specified by densities (im-
proper densities are not allowed in this development) gi (θi). Each of these
models produces a (marginal) density for Y ,

fi (y) =

∫
fi (y|θi) gi (θi) dθi

(where, as usual, the indicated integral is a Riemann integral, a sum, or some
combination of the two). One might then look at

BFi′i =
fi′ (y)

fi (y)
(15)

as an appropriate statistic for comparing models i and i′.
In Neyman-Pearson testing of

H0:the correct model is model i (Y ∼ fi)

versus
Ha :the correct model is model i′ (Y ∼ fi′)

BFi′i is the optimal test statistic (is the "likelihood ratio"). Further, if one
sets prior probabilities on models 1 through m, say p1, p2, . . . , pm the posterior
probability for model i is

pifi (y)∑m
l=1 plfl (y)

so that the posterior "odds ratio" for models i′ and i is

pi′fi′ (y)

pifi (y)
=

(
pi′

pi

)
BFi′i

which is the prior odds ratio times the Bayes factor.
Notice that one is typically not going to be able to do the calculus necessary

to compute the fi (y) needed to find Bayes factors. But often (especially
because it is common to make independence assumptions between coordinates
of θ in specifying priors) it’s easy to generate

θ1i ,θ
2
i , . . . ,θ

n
i that are iid gi (θi)

Then the law of large numbers implies that

1

n

n∑
l=1

fi

(
y|θli

)
P→ fi (y)

from which one can get approximate values for Bayes factors.
How to interpret Bayes factors has been a matter of some dispute. One set

of qualitative interpretations suggested by Jeffreys for a Bayes factor BF21 is
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• BF21 > 1 favors model 2,

• 0 > log10BF21 > − 12 provides minimal evidence against model 2,

• − 12 > log10BF21 > −1 provides substantial evidence against model 2,

• −1 > log10BF21 > −2 provides strong evidence against model 2, and

• −2 > log10BF21 provides decisive evidence against model 2.

One variant on this Bayes factor idea is that for comparing a Bayes model
for observable Y (say model 1) to a Bayes model for observable S = s (Y )
where s (·) is a 1-1 function (say model 2). That is, suppose that what is to be
compared are models specified by

f1 (y|θ1) and g1 (θ1)

and by
h (s|θ2) and g2 (θ2)

Now the ratio that is a Bayes factor involves two marginal densities for the same
observable. So in this case we must express both models in terms of the same
observable. That requires remembering what was learned in Stat 542 about
distributions of transformations of random variables. In the case that Y is
discrete, it is easy enough to see that

f2 (y|θ2) = h (s (y) |θ2)

so that

BF21 =

∫
h (s (y) |θ2) g2 (θ2) dθ2∫
f1 (y|θ1) g1 (θ1) dθ1

And in the case that Y is continuous, for Js (y) the Jacobian of the transfor-
mation s, the probability density for y under model 2 is

f2 (y|θ2) = |Js (y)|h (s (y) |θ2)

so that

BF21 = |Js (y)|
∫
h (s (y) |θ2) g2 (θ2) dθ2∫
f1 (y|θ1) g1 (θ1) dθ1

3.6 WinBUGS, Numerical Problems, Restarts, and "Tighter
Priors"

In complicated problems it is not uncommon for WinBUGS to stop in the mid-
dle of a simulation and report having numerical problems. It is rarely clear
from the diagnostics the program provides exactly what has gone wrong. One
can usually restart the simulation from the previous iterate (often after several
attempts) and continue on in the simulation. The WinBUGS documentation
suggests "tighter"/more informative priors as a general "fix" for this kind of
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problem. It is worth thinking about (even in the face of complete ignorance of
numerical details) what could be the implications of this kind of diffi culty, what
might happen if one "ignores it" and routinely restarts the simulation, and the
implication of following the manual’s advice.
Getting the WinBUGS error warning is indication that there is some part of

the θ or (y2,θ) space that gets nontrivial posterior probability and where the
current implementation of some evaluation of some function or some updating
algorithm breaks down. One could hope that in the most benign possible
situation, this part of the space is some "relatively small/unimportant isolated
corner of the space" and that a strategy of just blindly restarting the simulation
will effectively replace the real posterior with a posterior that is the posterior
conditioned on being in the "large/important part" of the space. (That counts
on restarts from "just inside the ‘good’part of the space and restricted to landing
in the ‘good’part" being equivalent to steps into the good part from inside the
‘bad’part.)
Of course there are also less benign possibilities. Consider, for example,

the possibility that the region where there are numerical problems serves as a
boundary between two large and equally important parts of the θ or (y2,θ)
space. It’s possible that one would then only see realizations from the part in
which the chain is started, and thus end up with a completely erroneous view
of the nature of the posterior. And it’s not clear that there is really any way
to tell whether the diffi culty that one faces is benign or malignant.
The WinBUGS "fix" for this problem is a "fix" only in that it restricts the

part of the θ or (y2,θ) space that gets nontrivial posterior probability, and
thereby keeps the sampler from getting into trouble. That is helpful only if one
decides that really a less diffuse prior is adequate/appropriate in the context of
the application. At the end of the day, the "real" fix for this kind of problem
is doing one’s own MCMC coding so that there is a chance of understanding
exactly what has happened when something does go wrong.

3.7 Auxiliary Latent Variables

Return to the notation of the exposition of the Gibbs, Metropolis-Hastings, and
Metropolis-Hastings-in-Gibbs algorithms. It can sometimes be advantageous to
simulate not only realizations of η, but realizations of (η,γ) for some additional
(typically vector) unobserved/latent variable γ. That is, suppose that r (γ|η)
is a conditional density for γ. Rather than doing MCMC from

h (η)

it can be more effective to do MCMC from

r (γ|η)h (η)

and then simply ignore the values of γ so generated, using the η’s to approximate
properties of the (h (η)) marginal of the joint distribution of (η,γ). As a matter
of fact, slice sampling is an example of this idea. But it is also more generally
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helpful, and is related to the idea of data-augmentation used in the famous EM
algorithm for maximization of a likelihood.
One nice application of the idea is in the analysis of interval-censored data

from a continuous distribution belonging to some parametric family. In this
context, η consists of the parameter vector and the likelihood is a product of η
probabilities of intervals in which a sample of observations are known to lie (one
term for each observation). But the Bayes analysis would typically be simpler if
one had instead the exact values of the observations, and could use a likelihood
that is the product of the density values for the observations. The application
of the auxiliary variables idea is then to let γ consist of the unobserved sample
of exact values. In a Gibbs algorithm, when one is updating the parameter
vector, one gets to use the posterior based on the exact values (instead of the
typically more complicated posterior based on the identities of the intervals
corresponding to the observations). The updates on the exact values are made
using the (fixed parameters) conditional distributions over the intervals in which
they are known to lie.
Another helpful application of the auxiliary variables idea is in the analysis

of mixture data. That is a context where one has several parametric forms
and assumes that data in hand are iid from a weighted (with positive weights
summing to 1) average of these. The objects of interest are usually the weights
and the parameters of the constituent distributions. A way of using auxil-
iary variables is to conceive of the individual observations as produced by a
two-stage process, where first one of the constituents is chosen at random ac-
cording the weights, and then the observation is generated from the individual
constituent distribution. The "constituent identities" of all observations then
become helpful auxiliary variables.
Finally, any "missing data" problem where one would naturally model an

entire vector of observations but actually gets to observe only part of the vector
is a candidate for use of the auxiliary variables idea. The missing or unobserved
values are the obvious auxiliary variables.

3.8 Handling Interval Censoring and Truncation in WinBUGS
/OpenBUGS

WinBUGS/OpenBUGS provides an "automatic" implementation of the auxiliary
variables idea for interval censoring. Suppose that a part of the data vector, y,
amounts to provision of the information that an incompletely observed variable
from a parametric probability density f (·|θ) (θ is part of the parameter vector
θ) is somewhere in the interval (a, b). Let yaux be this uncensored observation
and F (·|θ) the cdf corresponding to f (·|θ). y’s contribution to the likelihood
is

F (b|θ)− F (a|θ) (16)

and conditioned on y, yaux has pdf

f (yaux |θ)
F (b|θ)− F (a|θ)I [a < yaux < b] (17)

31



So (multiplying (16) and (17)) we see that the net effect of including the auxiliary
variable in MCMC is to replace (16) with

f (yaux |θ) I [a < yaux < b] (18)

in h (η) from which one must simulate. The WinBUGS/OpenBUGS method for
doing this is that instead of even trying to enter something like (16) into con-
sideration, one specifies that an unobserved variable yaux contributes a term
like (18) to h (η). For the specific correct syntax, see the Censoring and
truncation subsection of the Model Specification section of the WinBUGS/
OpenBUGS User Manual.
The pdf (17) is of independent interest. It is the pdf on (a, b) that has

the same shape as the density f (·|θ) (a pdf typically on all of < or on <+)
on that interval. It is usually known as a truncated version of f (·|θ). One
might imagine generating observations according to f (·|θ), but that somehow
all escape detection except those falling in (a, b). Density (17) is the pdf of any
observation that is detected.
There is no easy/automatic way to use a truncated distribution as a model

in WinBUGS. In particular one CANNOT simply somehow make use of the
censoring idea, somehow declaring that an observed variable has the distribution
f (·|θ) but is censored to (a, b). In the first place, (17) and (18) are not the same
functions. Besides, if one uses the WinBUGS code for censoring and essentially
includes terms like (18) in h (η) but then turns around and provides observed
values, one might as well have simply specified that the observation was from
f (·|θ) alone (the indicator takes the value 1). And the density (17) is NOT
equivalent to f (·|θ) as a contributor to a likelihood function.
The only way to make use of a truncated distribution as part of a WinBUGS

model specification is to essentially program one’s own version of the truncated
pdf and use the WinBUGS "zeros trick" to get it included as a factor in the
h (η) from which WinBUGS samples. (See the "Tricks: Advanced Use of
the BUGS Language" section of the WinBUGS User Manual.) HOWEVER,
truncation is now handled automatically in OpenBUGS in a way parallel to its
handling of censoring. See again the Model Specification section of the
OpenBUGS User Manual.

4 The Practice of Bayes Inference 2: Simple
One-Sample Models

Both because one-sample statistical problems are of interest in their own right
and because what we will find to be true for one-sample models becomes raw
material for building and using more complicated models, we now consider the
application of the Bayes paradigm to single samples from some common para-
metric models.
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4.1 Binomial Observations

Suppose that observable Y ∼Binomial(n, p) for the unknown parameter p ∈
(0, 1). Then when Y = y ∈ {0, 1, 2, . . . , n} the likelihood function becomes

L (p) =

(
n
y

)
py (1− p)n−y

From this it is immediate that a convenient form for a prior will be Beta(α, β),
that is, a continuous distribution on (0, 1) with pdf

g (p) =
1

B (α, β)
pα−1 (1− p)β−1 (19)

for some values α > 0 and β > 0. (α and β thus become parameters of the
prior distribution and are thus often termed "hyperparameters.") It is clear that
the product L (p) g (p) is proportional to a Beta(α+ y, β + (n− y)) density, i.e.
with prior specified by (19)

g (p|y) is B (α+ y, β + (n− y))

The Beta(α, β) distributions are conjugate priors for the simple binomial model.
Notice that the Fisher information in Y about p is

IY (p) = −Ep
d2

dp2
ln f (Y |p) =

n

p (1− p)

So the Jeffreys prior for the binomial model is specified by

g (p) =
√
IY (p) = p−1/2 (1− p)−1/2

That is, in this case the Jeffreys prior is a member of the conjugate Beta family,
the Beta(1/2, 1/2) distribution.
The Beta(α, β) mean is α/ (α+ β) so the posterior mean of p with a Beta

prior is

E [p|Y = y] =
α+ y

α+ β + n

=

(
α+ β

α+ β + n

)(
α

α+ β

)
+

(
n

α+ β + n

)( y
n

)
and this motivates thinking about the hyperparameters of a Beta prior in terms
of (α+ β) being a kind of "prior sample size" and α being a corresponding
"prior number of successes." (The posterior mean is a weighted average of the
prior mean and sample mean with respective weights in proportion to (α+ β)
and n.)
Notice that if one defines

θ = logit (p) ≡ ln

(
p

1− p

)
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and chooses an improper prior for θ that is "uniform on <," then

p = logit−1 (θ) =
exp (θ)

1 + exp (θ)

has an improper prior with "density" (proportional to)

g (p) = p−1 (1− p)−1 (20)

The meaning here is that for 0 < a < b < 1∫ b

a

p−1 (1− p)−1 dp ∝ logit (b)− logit (a) =

∫ logit(b)

logit(a)
1dθ

Now the improper prior specified by (20) is in some sense the α = 0 and β = 0
limit of (proper) Beta(α, β) priors. As long as 0 < y < n this improper prior
for p and the likelihood combine to give proper Beta posterior for p.

4.2 Poisson Observations

Suppose that observable Y ∼Poisson(λ) for the unknown parameter λ ∈ (0,∞).
Then when Y = y ∈ {0, 1, 2, . . . , } the likelihood function becomes

L (λ) =
exp (−λ)λy

y!

A conjugate form for a prior is Γ (α, β), that is, a distribution on (0,∞) with
pdf

g (λ) =
βα

Γ (α)
λα−1 exp (−βλ) (21)

It is then clear that the product L (λ) g (λ) is proportional to the Γ (α+ y, β + 1)
density, that is with prior specified by (21)

g (λ|y) is Γ (α+ y, β + 1)

The Γ (α, β) mean is α/β and the variance of the distribution is α/β2. So for
α = β = some small number, the prior (21) has mean 1 and a large variance.
The corresponding posterior mean is (α+ y) / (β + 1) ≈ y and the posterior

standard deviation is
√

(α+ y) / (β + 1)
2 ≈ √y.

Notice that the Fisher information in Y about λ is

IY (λ) = −Eλ
d2

dλ2
ln f (Y |λ) =

1

λ

So the (improper) Jeffreys prior for λ is specified by

g (λ) =
1√
λ
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and for α = 1/2 and β = some small number, the Γ (α, β) prior is approxi-
mately the Jeffreys prior.
Finally, note that for an improper prior for λ that is "uniform on (0,∞),"

i.e. g (λ) = 1 on that interval, the posterior density is

g (λ|y) ∝ exp (−λ)λy

i.e. the posterior is Γ (y + 1, 1).

4.3 Univariate Normal Observations

One- and two-parameter versions of models involving N
(
µ, σ2

)
observations can

be considered. We start with the one-parameter versions.

4.3.1 σ2 Fixed/Known

Suppose first that Y ∼N
(
µ, σ2

)
where σ2 is a known constant (and thus is not an

object of inference). Notice that here Y could be a sample mean of iid normal
observations, in which case σ2 would be a population variance over sample size.
(Note too that in such a case, suffi ciency considerations promise that inference
based on the sample mean is equivalent to inference based on the original set of
individual observations.)
The likelihood function here is

L (µ) =
1√

2πσ2
exp

(
− (y − µ)

2

2σ2

)
(22)

Then consider a (conjugate) N
(
m, γ2

)
prior for µ with density

g (µ) =
1√

2πγ2
exp

(
− (µ−m)

2

2γ2

)
(23)

Then

L (µ) g (µ) ∝ exp

(
−1

2

(
1

σ2
+

1

γ2

)
µ2 +

(
y

σ2
+
m

γ2

)
µ

)
So the posterior pdf g (µ|y) is again normal with

variance =

(
1

σ2
+

1

γ2

)−1
=

γ2σ2

σ2 + γ2
(24)

and

mean =

(
y

σ2
+
m

γ2

)
· variance =

y

σ2
+
m

γ2

1

σ2
+

1

γ2

(25)

For purposes of Bayes analysis, it is often convenient to think in terms of a
distribution’s

precision =
1

variance
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In these terms, equation (24) says that in this model

posterior precision = prior precision+ precision of likelihood (26)

and equation (25) says that in this model the posterior mean is a precision-
weighted average of the prior and sample means.
As a bit of an aside, notice that while (26) and (25) describe the posterior

distribution of µ|Y = y, one might also be interested in the marginal distribution
of Y. This distribution is also normal, with

EY = m and VarY = σ2 + γ2

So in the case of the marginal distribution, it is variances (not precisions) that
add.
The Fisher information in Y about µ is

IY (µ) = −Eµ
d2

dµ2
lnL (µ) =

1

σ2

This is constant in µ. So the (improper) Jeffreys prior for µ is "uniform on
<," g (µ) = 1. With this improper prior, the posterior is proportional to L (µ).
Looking again at (22) we see that the posterior density g (µ|y) is then N

(
y, σ2

)
.

Notice that in some sense this improper prior is the γ2 =∞ limit of a conjugate
prior (23) and the corresponding N

(
y, σ2

)
posterior is the γ2 = ∞ limit of the

posterior for the conjugate prior.
Consider the proper U(a, b) prior with density

g (µ) ∝ I [a < µ < b]

With this prior the posterior has density

g (µ|y) ∝ I [a < µ < b] exp

(
− (y − µ)

2

2σ2

)

That is, the posterior is the N
(
y, σ2

)
distribution truncated to the interval

(a, b). Then, as long as a � y � b (relative to the size of σ) the posterior is
essentially N

(
y, σ2

)
. That is, this structure will allow one to approximate a

Jeffreys analysis using a proper prior.

4.3.2 µ Fixed/ Known

Suppose now that Y = (Y1, Y2, . . . , Yn) has components that are iid N
(
µ, σ2

)
where µ is a known constant (and thus is not an object of inference and can be
used in formulas for statistics to be calculated from the data). The likelihood
function here is

L
(
σ2
)

=

(
1√

2πσ2

)n
exp

(
−
∑n
i=1 (yi − µ)

2

2σ2

)
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Let

w =
1

n

n∑
i=1

(yi − µ)
2

and with this notation note that

L
(
σ2
)
∝
(
σ2
)−n/2

exp
(
− n

2σ2
w
)

A conjugate prior here is the so-called Inv-Γ (α, β) distribution on (0,∞)
with pdf

g
(
σ2
)
∝
(
σ2
)−(α+1)

exp

(
− β

σ2

)
(27)

It is then obvious (upon inspection of the product L
(
σ2
)
g
(
σ2
)
) that using prior

(27), the posterior is

Inv-Γ
(
α+

n

2
, β +

nw

2

)
(28)

A useful/standard re-expression of this development is in terms of the so-
called "scaled inverse χ2 distributions." That is, one could start by using a
prior for σ2 that is the distribution of

φ2ν

X
for X ∼ χ2ν (29)

From (29) it it clear that φ2 is a scale parameter for this distribution and that
ν governs the shape of the distribution. The textbook uses the notation

σ2 ∼ Inv-χ2
(
ν, φ2

)
or σ2 ∼ Inv-Γ

(ν
2
,
ν

2
· φ2
)

for the assumption that σ2 has the distribution of (29). With this notation,
the posterior is

Inv-Γ
(

1

2
(ν + n) ,

ν

2
φ2 +

nw

2

)
or Inv-χ2

(
ν + n,

νφ2 + nw

ν + n

)
(30)

This second form in (30) provides a very nice interpretation of what happens
when the prior and likelihood are combined. The degrees of freedom add,
with the prior essentially having the same influence on the posterior as would
a legitimate sample of size ν. The posterior scale parameter is an appropri-
ately weighted average of the prior scale parameter and w (the known-mean-n-
denominator sample variance).
It’s fairly easy to determine that the Fisher information in Y = (Y1, Y2, . . . , Yn)

about σ2 is
IY
(
σ2
)

=
n

2σ4

so that a Jeffreys (improper) prior for σ2 is specified by

g
(
σ2
)
∝ 1

σ2
(31)
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Notice that since for 0 < a < b <∞∫ b

a

1

x
dx = ln b− ln a =

∫ ln b

ln a

1dx

the improper prior for σ2 specified by (31) is equivalent to an (improper) prior
for lnσ2 (or lnσ) that is uniform on <.
Notice also that the Jeffreys improper prior (31) is in some sense the α = 0

and β = 0 limit of the Inv-Γ (α, β) prior, or equivalently the fixed φ2 and
ν = 0 limit of the Inv-χ2

(
ν, φ2

)
prior. The posterior for this improper prior is

specified by

g
(
σ2|w

)
∝
(
σ2
)−1 (

σ2
)−n/2

exp
(
− n

2σ2
w
)

that is, the (proper) posterior is

Inv-Γ
(n

2
,
nw

2

)
or Inv-χ2 (n,w)

4.3.3 Both µ and σ2 Unknown

Suppose finally that Y = (Y1, Y2, . . . , Yn) has components that are iid N
(
µ, σ2

)
,

where neither of the parameters is known. The likelihood function is

L
(
µ, σ2

)
=

(
1√

2πσ2

)n
exp

(
−
∑n
i=1 (yi − µ)

2

2σ2

)

There are several obvious choices for a (joint) prior distribution for
(
µ, σ2

)
.

First, one might put together the two improper Jeffreys priors for µ and
σ2 individually. That is one might try using an improper prior on < × (0,∞)
specified by

g
(
µ, σ2

)
∝ 1 · 1

σ2
(32)

Since this a product of a function of µ and a function of σ2, this is a prior
of "independence." As it turns out, provided that n ≥ 2 the prior (32) has a
corresponding proper posterior, that is of course specified by a joint density for
µ and σ2 of the form

g
(
µ, σ2|y

)
∝ L

(
µ, σ2

)
g
(
µ, σ2

)
(33)

The posterior density (33) is NOT the product of a function of µ and a function
of σ2, and thus does not specify a posterior of independence. This is not a bad
feature of (32). We should, for example, want cases where the usual sample
variance s2 is small to be ones that produce posteriors that indicate 1) that σ2

is likely small, and that therefore 2) µ has been fairly precisely determined ...
one does not want the posterior to have the same conditional variance for µ for
all σ2 values.
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Pages 73-77 of the text show that posterior (33) has attractive marginals.
First, it turns out that

g
(
σ2|y

)
is Inv-χ2

(
n− 1, s2

)
that is, conditioned on Y = y (and therefore the value of the usual sample
variance, s2) σ2 has the distribution of

(n− 1) s2

X
for X ∼ χ2n−1

Further, conditioned on Y = y (and therefore the values of ȳ and s2) µ has the
distribution of

ȳ + T
s√
n
for T ∼ tn−1

These two facts imply that Bayes posterior (credible) intervals for µ and σ2 will
agree exactly with standard Stat 500 confidence intervals (at the same level) for
the parameters.
Of course it is possible to approximate the improper prior (32) with proper

joint distributions and get posterior inferences that are essentially the same as
for this improper prior. For example, as an approximation to (32), one might
specify that a priori µ and lnσ2 are independent with

µ ∼ U (small1, large1) and lnσ2 ∼ U (small2, large2)

and expect to get essentially frequentist posterior inferences.
Another possibility is to use a product of two proper conjugate marginal

priors for a joint prior. That is, one might specify that a priori µ and σ2 are
independent with

µ ∼ N
(
m, γ2

)
and σ2 ∼ Inv-χ2

(
ν, φ2

)
As it turns out, nothing works out very cleanly with this choice of prior. See
pages 80-82 of the textbook. Analysis of the posterior here is really a job for
simulation. Obviously, one expects that for large γ2 and small ν, inferences
based on this structure should look much like those made using the form (32),
and therefore a lot like Stat 500 inferences.
Finally, on pages 78-80 the textbook discusses what seems to me to be a

very unattractive but conjugate prior for
(
µ, σ2

)
. I find the assumed prior

dependence between the two parameters and the specification of the constant
κ0 to be quite unnatural.

4.4 Multivariate Normal Observations

As is completely standard, for a nonsingular covariance matrix Σ, we will say
that a k-dimensional random vector Y ∼MVNk (µ,Σ) provided it has a pdf on
<k

f (y|µ,Σ) = (det Σ)
−1/2

exp

(
−1

2
(y − µ)

′
Σ−1 (y − µ)

)
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Then if Y = (Y 1,Y 2, . . . ,Y n) where the components Y i are iid MVNk (µ,Σ),
the joint pdf is

f (y|µ,Σ) = (det Σ)
−n/2

exp

(
−1

2

n∑
i=1

(yi − µ)
′
Σ−1 (yi − µ)

)

= (det Σ)
−n/2

exp

(
−1

2
tr
(
Σ−1S0

))
where

S0 =

n∑
i=1

(yi − µ) (yi − µ)
′ (34)

We proceed to consider models involving multivariate normal observations.

4.4.1 Σ Fixed/Known

Suppose that Y = (Y 1,Y 2, . . . ,Y n) where the components Y i are iid MVNk (µ,Σ).
If Σ is known, the likelihood function is

L (µ) = (det Σ)
−n/2

exp

(
−1

2
tr
(
Σ−1S0

))
for S0 the function of µ defined in (34). Then consider a conjugate MVNk (m,Γ0)
prior for µ here. As it turns out, in direct generalization of the univariate nor-
mal case with known variance and (25) and (24), the posterior pdf g (µ|y) is
MVNk with mean vector

µn =
(
Γ−10 + nΣ−1

)−1 (
Γ−10 m+ nΣ−1ȳ

)
(35)

and covariance matrix
Γn =

(
Γ−10 + nΣ−1

)−1
(36)

Thinking of a covariance matrix as an "inverse precision matrix," the sampling
precision of Ȳ is nΣ−1, and (36) says that the posterior precision is the sum
of the prior precision and the precision of the likelihood, while (35) says the
posterior mean is a precision-weighted average of the prior mean and the sample
mean. If the matrix Γ0 is "big" (the prior precision matrix Γ−10 is "small") then
the posterior for the conjugate prior is approximately MVNk

(
ȳ, 1nΣ

)
. More

directly, if one uses an improper prior for µ that is uniform on <k one gets this
MVNk

(
ȳ, 1nΣ

)
posterior exactly.

4.4.2 µ Fixed/Known

Suppose that Y = (Y 1,Y 2, . . . ,Y n) where the components Y i are iid MVNk (µ,Σ).
If µ is known, the likelihood function is

L (Σ) = (det Σ)
−n/2

exp

(
−1

2
tr
(
Σ−1S0

))
= (det Σ)

−n/2
exp

(
−1

2
tr
(
S0Σ

−1)) (37)
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for S0 defined in (34). In order to do Bayes inference, we then need to place
prior distributions on covariance matrices. This requires doing some post-
Stat 542 probability (that essentially generalizes the chi-squared distributions
to multivariate cases) and introducing the Wishart (and inverse Wishart) dis-
tributions.

Wishart Distributions
Let α1,α2, . . . ,αν be iid MVNk (0,∆) for a non-singular covariance matrix

∆. Then for ν ≥ k consider the "sum of squares and cross-products matrix"
(for these mean 0 random vectors)

W =

ν∑
i=1

α′iαi =

(
ν∑
i=1

αilαim

)
l = 1, 2, . . . , k
m = 1, 2, . . . , k

(38)

This random k × k matrix has the so-called Wishart(ν,∆) distribution. Now
W has only k + 1

2

(
k2 − k

)
different entries, as those below the diagonal are

the same as their opposite numbers above the diagonal. So if one wishes to
write a pdf to describe the distribution ofW it will really be a function of those
fewer than k2 distinct elements. It turns out that (thought of on the right as a
function of k× k matrix w and on the left as a function of the elements on and
above the diagonal of w) W has a pdf

f (w|ν,∆) ∝ (detw)
(ν−k−1)/2

exp

(
−1

2
tr
(
∆−1w

))
(39)

It follows from either representation (38) or density (39) that ifW ∼Wishart(ν,∆)

EW = ν∆

and in fact the diagonal elements of W are scaled χ2 variables. That is

Wii ∼ Γ

(
ν

2
,
δii
2

)
where δii is the ith diagonal element of ∆. That is, Wii has the same distrib-
ution as δiiX for X ∼ χ2ν .
For users of WinBUGS/OpenBUGS a serious caution needs to be interjected

at this point.
V ∼WinBUGS-Wishart (ν,Γ)

means that
V ∼Wishart

(
ν,Γ−1

)
in the present notation/language. That is, WinBUGS/OpenBUGS parameterizes
with precision matrices, not covariance matrices.
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Inverse Wishart Distributions
Next, for W ∼Wishart(ν,∆), consider

U = W−1

This k × k inverse sum of squares and cross-products random matrix can be
shown to have probability density

f (u|ν,∆) ∝ (detu)
−(ν+k+1)/2

exp

(
−1

2
tr
(
∆−1u−1

))
(40)

We will call the distribution of U = W−1 (as specified by the pdf in (40))
Inv-Wishart(ν,∆). That is

W ∼Wishart (ν,∆) ⇒ U = W−1 ∼ Inv-Wishart (ν,∆)

As it turns out,

EU = EW−1 =
1

ν − k − 1
∆−1 (41)

and the diagonal entries of U are scaled inverse χ2 variables. That is, for γii
the ith diagonal entry of ∆−1, the ith diagonal entry of U is

Uii ∼ Inv-Γ
(
ν − k + 1

2
,
γii
2

)
or Inv-χ2

(
ν − k + 1,

γii
ν − k + 1

)
(recall the definitions in Section 4.3.2), i.e. Uii has the same distribution as
γii/X for X ∼ χ2ν−k+1. Notice also that with the conventions of this discussion,
W ∼Wishart(ν,∆) implies that ∆ is a scaling matrix for W and ∆−1 is a
scaling matrix for U = W−1.

A particularly helpful/interpretable version of this is that where ν = k + 1
(so that the degrees of freedom are as small as possible subject to the re-
quirement that with probability 1 the matrix W is nonsingular) and ∆ =
diag (δ11, δ22, . . . , δkk). In this case, the inverse-Wishart distributed covari-
ance matrix U = W−1 has all correlations uniformly distributed on (−1, 1),
and has median for diagonal entry i (the ith variance) of about .72/δii. (The

ith diagonal entry of U is Inv-Γ
(

1, 1
2δii

)
distributed.)

Application of Inverse Wishart Priors
So, now comparing the form of the "known µmultivariate normal likelihood"

in (37) and the Inv-Wishart pdf in (40) it is clear that the inverse Wishart
distributions provide conjugate priors for this situation. If for ν ≥ k and a
given non-singular covariance matrix ∆, one makes the prior assumption that
Σ ∼Inv-Wishart(ν,∆), i.e. assumes that

g (Σ) ∝ (det Σ)
−(ν+k+1)/2

exp

(
−1

2
tr
(
∆−1Σ−1

))
(42)

42



multiplying (37) and (42) shows that the posterior is

Inv-Wishart
(
n+ ν,

(
S0 + ∆−1

)−1)
(43)

So, for example, the posterior mean for Σ is

1

n+ ν − k − 1

(
S0 + ∆−1

)
and, for example, Σii has the posterior distribution of sii/X for X ∼ χ2n+ν−k+1
and sii the ith diagonal entry of S0+∆−1, i.e. the posterior distribution of the
ith diagonal entry of Σ is Inv-Γ

(
n+ν−k+1

2 , sii2
)
.

It’s fairly obvious that the smaller one makes ν the less influential is the
prior on the form of the posterior (43). ν is sometimes thought of as a fictitious
"prior sample size" in comparison to n. So in light of the discussion above
about the ν = k + 1 and diagonal ∆ cases of the inverse Wishart distribution,
these have some claim to a position as minimally informative conjugate proper
priors for a covariance matrix.

Using WinBUGS/OpenBUGS With Inverse Wishart Priors
Consider what is required in order to set an Inv-Wishart prior for Σ with a

desired/target prior mean. The form (41) implies that if one has in mind some
target prior mean for Σ, say Λ, one wants prior parameters ν and ∆ such that

Λ =
1

ν − k − 1
∆−1

that is
∆ =

1

ν − k − 1
Λ−1 (44)

One may set a prior Σ ∼Inv-Wishart(ν,∆) by setting Σ−1 ∼Wishart(ν,∆)
and have a desired prior mean for Σ by using (44). If one is then using
WinBUGS/OpenBUGS this is done by setting Σ−1 ∼WinBUGS-Wishart

(
ν,∆−1

)
,

and to get a target prior mean of Λ requires that one use Σ−1 ∼WinBUGS-
Wishart(ν, (ν − k − 1) Λ).

An Improper Limit of Inverse Wishart Priors
A candidate for a "non-informative" improper prior for Σ is

g (Σ) ∝ (det Σ)
−(k+1)/2 (45)

which is in some sense the ν = 0 and "∆ = ∞" formal limit of the form (42).
The product of forms (37) and (45) produces an Inv-Wishart

(
n,S−10

)
posterior.

So, for example, under (45) the posterior mean is

1

n− k − 1

(
S−10

)−1
=

1

n− k − 1
S0
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4.4.3 Both µ and Σ Unknown

If one now treats both µ and Σ as unknown, for data Y = (Y 1,Y 2, . . . ,Y n)
where the components Y i are iid MVNk (µ,Σ) the likelihood function is

L (µ,Σ) = (det Σ)
−n/2

exp

(
−1

2
tr
(
Σ−1S0

))
where S0 is still (the function of µ) defined in (34).
Probably the most appealing story to be told concerning Bayes inference in

this context concerns what happens when one uses an improper prior for the
elements of µ and Σ that is put together by taking the product of the two
non-informative priors from the "known µ" and "known Σ" cases. That is, one
might consider

g (µ,Σ) ∝ 1 · (det Σ)
−(k+1)/2 (46)

With improper prior (46) as a direct generalization of what one gets in the
univariate normal problem with unknown mean and variance, the posterior dis-
tribution of Σ is Inv-Wishart, i.e.

Σ| y ∼ Inv-Wishart
(
n− 1,S−1

)
(47)

where

S =

n∑
i=1

(yi − ȳ) (yi − ȳ)
′

is the sum of squares and cross-products around the sample means matrix (i.e.
is n − 1 times the sample covariance matrix). By the way, the textbook has
this wrong on its page 88 (wrongly substituting S for S−1 in the Inv-Wishart
form for the posterior). (47) and (41) then imply that the posterior mean for
Σ using (46) is

1

n− k − 2
S

Further, again as a direct generalization of what one gets in the univariate
normal problem with unknown mean and variance, the posterior distribution of
µ is multivariate t. That is,

(µ− ȳ) | y ∼ Multivariate t
(
n− k, 1

n

(
1

n− kS
))

meaning that µ has the (posterior) distribution of

ȳ+
1√
n

(
1

n− kS
)1/2√

n− k
W

Z

where Z is a k×1 vector of independent N(0, 1) random variables, independent

of W ∼ χ2n−k, and
(

1
n−kS

)1/2
is a matrix square root of

(
1

n−kS
)
. (Notice

44



that this fact allows one to easily (at least by simulation) find the posterior
distribution of (and thus credible sets for) any parametric function h (µ).)
An alternative to the improper prior (46) is a product of two proper priors for

µ and Σ. The obvious choices for the two marginal priors are a MVNk (m,Γ0)
prior for µ and an Inv-Wishart(ν,∆) prior for Σ. Nothing works out very
cleanly (in terms of analytical formulas) under such assumptions, but one should
expect that for Γ0 "big," ν small, and ∆ "big," inferences for the proper prior
should approximate those for the improper prior (46).

4.5 Multinomial Observations

Consider now n independent identical trials where each of these has k possible
outcomes with respective probabilities p1, p2, . . . , pk (where each pi ∈ (0, 1) and∑
pi = 1). If

Yi = the number of outcomes that are of type i

then Y = (Y1, Y2, . . . , Yk) is Multinomialk (n,p) (for p = (p1, p2, . . . , pk)) and
has (joint) probability mass function

f (y|p) =

(
n

y1, y2, . . . , yk

) k∏
i=1

pyii

(for vectors y of non-negative integers yi with sum n). The coordinate variables
Yi are, of course, Binomial(n, pi).
Consider inference for p based on Y ∼Multinomialk (n,p). The likelihood

function is

L (p) =

(
n

y1, y2, . . . , yk

) k∏
i=1

pyii (48)

and in order to do Bayes inference, one must find a way to put a prior distrib-
ution on the set of (k-vectors) p that have each pi ∈ (0, 1) and

∑
pi = 1.

The most convenient (and conjugate) form for a distribution on the set of p’s
that have each pi ∈ (0, 1) and

∑
pi = 1 is the Dirichlet form. If X1, X2, . . . , Xk

are independent random variables with Xi ∼ Γ (αi, 1) for positive constants
α1, α2, . . . , αk and one defines

Wi =
Xi∑k
i=1Xi

then

W =


W1

W2

...
Wk

 ∼ Dirichletk (α)
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Using this characterization it is easy to argue that the ith marginal of a Dirichlet

vector is Beta
(
αi,
∑
j 6=i αj

)
and that conditional distributions of some coordi-

nates given the values of the others are the distributions of multiples of Dirichlet
vectors. The pdf for k− 1 coordinates ofW ∼Dirichletk (α) (written in terms
of all k coordinates) is

f (w|α) ∝
k∏
i=1

wαii (49)

Using (48) and (49) it is clear that using a Dirichletk (α) prior for p, the
posterior is

p|y is Dirichletk (α+ y)

So, for example, the Beta posterior marginal of pi has mean

αi + yi∑k
i=1 αi + n

=

(∑k
i=1 αi

)( αi∑k
i=1 αi

)
+ n

(yi
n

)
∑k
i=1 αi + n

(50)

The form of the posterior mean (50) suggests the common interpretation that∑k
i=1 αi functions as a kind of "prior sample size" in comparison to n for weight-

ing the prior against the sample information (encoded in the relative frequencies
yi/n). If the former is small in comparison to n, the posterior means (50) are
nearly the sample relative frequencies. Otherwise, the posterior means are the

sample relative frequencies shrunken towards the prior means αi/
(∑k

i=1 αi

)
.

Of course, the larger is
∑k
i=1 αi the more concentrated/less dispersed is the

prior and the larger is
∑k
i=1 αi + n the more concentrated/less dispersed is the

posterior.

5 Graphical Representation of Some Aspects of
Large Joint Distributions

This section of the outline covers some material taken from Chapters 17 and
18 of All of Statistics by Wasserman. (Wasserman’s book refers its readers
to Introduction to Graphical Modeling by Edwards for a complete treatment of
this subject. Lauritzen’s Graphical Models is another standard reference.) It
concerns using graphs (both directed and undirected) as aids to understanding
simple (independence) structure in high-dimensional distributions of random
variables (X,Y, Z, . . .) and in relating that structure to functional forms for
corresponding densities.
The developers of WinBUGS/OpenBUGS recommend making a "directed graph-

ical" version of every model one uses in the software, and the logic of how one
naturally builds Bayes models is most easily related to directed graphs. So
although concepts for undirected graphs (and how they represent independence
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relationships) are simpler than those for directed graphs, we will discuss the
more complicated case (of directed graphs) first. But before doing even this,
we make some observations about conditional independence.

5.1 Conditional Independence

Random variables X and Y are conditionally independent given Z written

X ‖Y |Z

provided
fX,Y |Z (x, y|z) = fX|Z (x|z) fY |Z (y|z)

A basic result about conditional independence is that

X ‖Y |Z ⇐⇒ fX|Y,Z (x|y, z) = fX|Z (x|z)

Conditional independence (like ordinary independence) has some impor-
tant/useful properties/implications. Among these are

1. X ‖Y |Z ⇒ Y ‖X |Z

2. X ‖Y |Z and U = h (X)⇒ U ‖Y |Z

3. X ‖Y |Z and U = h (X)⇒ X ‖Y |Z,U

4. X ‖Y |Z and X ‖W | (Y, Z)⇒ X ‖ (W,Y ) |Z

5. X ‖Y |Z and X ‖Z |Y ⇒ X ‖ (Y,Z)

A possibly more natural (but equivalent) version of property 3. is

X ‖Y |Z and U = h (X)⇒ Y ‖ (X,U) |Z

A main goal of this material is representing large joint distributions in graph-
ical ways that allow one to "see" conditional independence relationships in the
graphs.

5.2 Directed Graphs and Joint Probability Distributions

A directed graph (that might potentially represent some aspects of the joint
distribution of (X,Y, Z, . . .)) consists of nodes (or vertices) X,Y, Z, . . . and
arrows (or edges) pointing between some of them.
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5.2.1 Some Graph-Theoretic Concepts

For a graph with nodes/vertices X,Y, Z, . . .

1. if an arrow points from X to Y we will say that X is a parent of Y and
that Y is a child of X

2. a sequence of arrows beginning at X and ending at Y will be called a
directed path from X to Y

3. if X = Y or there is a directed path from X to Y , we will say that X is
an ancestor of Y and Y is a descendent of X

4. if an arrow pointing in either direction connects X and Y they will be said
to be adjacent

5. a sequence of adjacent vertices starting at X and ending at Y without
reference to direction of any of the arrows will be called an undirected
path from X to Y

6. an undirected path from X to Y has a collider at Z if there are two
arrows in the path pointing to Z

7. a directed path that starts and ends at the same vertex is called a cycle

8. a directed graph is acyclic if it has no cycles

As a matter of notation/shorthand an acyclic directed graph is usually called a
DAG (a directed acyclic graph) although the corresponding word order is not
really as good as that corresponding to the unpronounceable acronym "ADG."

Example 1 A first DAG

Figure 1: A First DAG

In Figure 1, X and Y are adjacent. X and Z are not adjacent. X is a
parent of Y and an ancestor of W . There is a directed path from X to W and
an undirected path from X to Z. Y is a collider on the path XY Z and is not
a collider on the path XYW .

48



5.2.2 First Probabilistic Concepts and DAG’s

For a vector of random variables and vertices X = (X1, X2, . . . , Xk) and a
distribution F for X, it is said that a DAG G represents F (or F is Markov
to G) if and only if

fX (x) =

k∏
i=1

fXi|parentsi (xi|parentsi)

where
parentsi = {parents of Xi in the DAG G}

Example 2 More on the first DAG
A joint distribution F for (X,Y, Z,W ) is represented by the DAG pictured

in Figure 1 if and only if

fX,Y,Z,W (x, y, z, w) = fX (x) fY (y) fY |X,Z (y|x, z) fW |Y (w|y) (51)

In WinBUGS/OpenBUGS there is the "Doodles" facility that allows one to in-
put a model in terms of an associated DAG (augmented with information about
specific forms of the conditional distributions). The joint distribution that is
built by the software is then one represented by the Doodle DAG. Notice, for
example, what a DAG tells one about how Gibbs sampling can be done. The
DAG pictured in Figure 1 with guaranteed corresponding form (51) implies that
when updating X one samples from a distribution specified by

fX (·) fY |X,Z (ycurrent |·, zcurrent)

updating of Z is similar, updating of Y is done sampling from a distribution
specified by

fY |X,Z (·|xcurrent , zcurrent) fW |Y (wcurrent |·)

and updating of W is done by sampling from a distribution specified by

fW |Y (·|ycurrent)

A condition equivalent to the Markov condition can be stated in terms of
conditional independence relationships. That is, let X̃i stand for the set of all
vertices X1, X2, . . . , Xk in a DAG G except for the parents and descendents of
Xi. Then

F is represented by G ⇔ for every vertex Xi, Xi ‖ X̃i | parentsi (52)

Example 3 Yet more on the first DAG
If a joint distribution F for (X,Y, Z,W ) is represented by the DAG pictured

in Figure 1, it follows that

X ‖Z and W ‖ (X,Z) |Y
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5.2.3 Some Additional Graph-Theoretic Concepts andMore on Con-
ditional Independence

Relationship (52) provides some conditional independence relationships implied
by a DAG representation of a joint distribution F . Upon introducing some
more machinery, other conditional independence relationships that will always
hold for such F can sometimes be identified. These can be helpful for thinking
about the nature of a large joint distribution.

Example 4 A second, more complicated DAG

Figure 2: A Second DAG

Figure 2 provides a second example of a DAG. It follows from (52) that for
F represented by the DAG in Figure 2, all of the following conditional indepen-
dence relationships hold:

1. X1 ‖X2

2. X2 ‖ (X1, X4)

3. X3 ‖X4 | (X1, X2)

4. X4 ‖ (X2, X3) |X1

5. X5 ‖ (X1, X2) | (X3, X4)

But it is also true that
(X4, X5) ‖X2 | (X1, X3)

and that with proper additional machinery, this relationship can be read from
the DAG.

The basic new graph-theoretic concepts needed concern connectedness and
separatedness of vertices on a DAG. For a particular DAG, G,

1. if X and Y are distinct vertices and Q a set of vertices not containing
either X or Y , then we will say that X and Y are d-connected given
Q if there is an undirected path P between X and Y such that

(a) every collider on P has a descendent in Q, and
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(b) no other vertex (besides possibly those mentioned in (a)) on P is in
Q.

2. if X and Y are not d-connected given Q, they are d-separated given
Q.

3. if A,B, and Q are non-overlapping sets of vertices, A 6= ∅ and B 6= ∅, then
we will say that A and B are d-separated given Q if every X ∈ A and
Y ∈ B are d-separated given Q.

4. if A,B, and Q are as in 3. and A and B are not d-separated given Q then
we will say that A and B are d-connected given Q.

Example 5 A third DAG (Example 17.9 of Wasserman)

Figure 3: A Third DAG

In the DAG shown in Figure 3

1. X and Y are d-separated given ∅.

2. X and Y are d-connected given {S1, S2}.

3. X and Y are d-connected given {U,W}.

4. X and Y are d-separated given {S1, S2, V }.

The relationship between these graph-theoretic concepts and conditional in-
dependence for vertices of a DAG is then as follows. For disjoint sets of vertices
A,B, and C of a DAG, G, that represents a joint distribution F

A ‖B |C ⇔ A and B are d-separated by C (53)

Example 6 More on the second DAG
Consider a joint distribution F for X1, X2, X3, X4, and X5 represented by

the DAG shown in Figure 2. Take

A = {X4, X5} , B = {X2} , and C = {X1, X3}

Then
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1. X4 and X2 are d-separated given C,

2. X5 and X2 are d-separated given C, so

3. A and B are d-separated given C.

Thus by (53) one may conclude that

(X4, X5) ‖X2 | (X1, X3)

as suggested earlier.

Figure 4: A Fourth DAG

Notice that in Figure 4, X3 is a collider on the undirected path from X1 to
X2, and X1 and X2 are d-connected given X3. So in general, X1 and X2 will
not be conditionally independent given X3 for F represented by the DAG. This
should not surprise us, given our experience with Bayes analysis. For example
we know from Section 4.3.3 that in a Bayes model where Y = (Y1, Y2, . . . , Yn)
has components that are iid N

(
µ, σ2

)
(conditioned on

(
µ, σ2

)
), even where a

priori µ and σ2 are assumed to be independent, the posterior g
(
µ, σ2|y

)
will

typically NOT be one of (conditional) independence (given Y = y). The DAG
for this model is, of course, the version of Figure 4 shown in Figure 5.

Figure 5: DAG for the 2 Parameter Single Sample Normal Bayes Model

5.3 Undirected Graphs and Joint Probability Distribu-
tions

An undirected graph (that might potentially represent some aspects of the
joint distribution of (X,Y, Z, . . .)) consists of nodes (or vertices) X,Y, Z, . . .
and edges between some of the possible pairs of vertices. (Formally, one might
think of edges as vertex pairs.)
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5.3.1 Some Graph-Theoretic Concepts

Some of the terminology introduced above for directed graphs carries over to
undirected graphs. And there are also some important additional concepts.
For a graph with nodes/vertices X,Y, Z, . . .

1. two vertices X and Y are said to be adjacent if there is an edge between
them, and this will here be symbolized as X ∼ Y

2. a sequence of vertices {X1, X2, . . . , Xn} is a path if Xi ∼ Xi+1 for each i

3. if A,B, and C are disjoint sets of vertices, we will say that C separates
A and B provided every path from a vertex X ∈ A to a vertex Y ∈ B
contains an element of C

4. a clique is a set of vertices of a graph that are all adjacent to each other

5. a clique is maximal if it is not possible to add another vertex to it and
still have a clique

Example 7 A first undirected graph

Figure 6: A First Undirected Graph

In Figure 6, X1, X2, and X3 are vertices and there is one edge connecting
X1 and X3 and another connecting X2 and X3.

Example 8 A second undirected graph

Figure 7: A Second Undirected Graph

In Figure 7

1. {X1, X3} and {X4} are separated by {X2}

2. {X3} and {X4} are separated by {X2}

3. {X1, X2} is a clique

4. {X1, X2, X3} is a maximal clique
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5.3.2 Some Probabilistic Concepts and Undirected Graphs

Suppose that F is a joint distribution for X1, X2, . . . , Xk. For each i and j let
X̌ij stand for all elements of {X1, X2, . . . , Xk} except elements i and j. We
may associate with F a pairwise Markov graph G by

failing to connect Xi and Xj with an edge if and only if Xi ‖Xj | X̌ij

A pairwise Markov graph for F can in theory be made by considering only(
k
2

)
pairwise conditional independence questions. But as it turns out, many

other conditional independence relationships can be read from it. That is, it
turns out that if G is a pairwise Markov graph for F , then for non-overlapping
sets of vertices A,B, and C,

C separates A and B ⇒ A ‖B |C (54)

Example 9 A third undirected graph and conditional independence

Figure 8: A Pairwise Markov (Undirected) Graph for F

If Figure 8 is a pairwise Markov graph for a distribution F for X1, X2, . . . , X5,
we may conclude from (54) that

(X1, X2, X5) ‖ (X3, X4) and X2 ‖X5 |X1

Property (54) says that for a pairwise Markov (undirected) graph for F , sep-
aration implies conditional independence. Condition (53) says that for a DAG
representing F , d-separation is equivalent to conditional independence. A nat-
ural question is whether the forward implication in (54) might be strengthened
to equivalence. As it turns out, this is possible as follows. For F a joint
distribution for X1, X2, . . . , Xk and G an undirected graph, we will say that F
is globally G Markov provided for non-overlapping sets of vertices A,B, and
C

C separates A and B ⇔ A ‖B |C

Then as it turns out,

F is globally G Markov⇔ G is a pairwise Markov graph associated with F

so that separation on a pairwise Markov graph is equivalent to conditional in-
dependence.
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Figure 9: A Second (Undirected) Pairwise Markov Graph

Example 10 A fourth undirected graph and conditional independence
Whether one thinks of Figure 9 as a pairwise Markov graph G associated

with F or thinks of F as globally G Markov, it follows (for example) that

X1 ‖X3 |X2 and X1 ‖X4 |X2

There remains to consider what connections there might be between an undi-
rected graph related to F and a functional form for F . It turns out that sub-
ject to some other (here unspecified) technical conditions, a distribution F for
X = (X1, X2, . . . , Xk) is globally G Markov if and only if there are positive
functions ψC such that

fX (x) ∝
∏
C∈C

ψC (C)

where C is the set of maximal cliques associated with G. (Any vertices that
share no edges get their own individual factors in this kind of product.)

Example 11 (Example 18.7 of Wasserman) Another undirected graph
and the form of fX

Figure 10: Another (Undirected) Pairwise Markov Graph

The set of maximal cliques associated with the undirected graph G in Figure
10 is

C = {{X1, X2} , {X1, X3} , {X2, X5, X6} , {X2, X4} , {X3, X5}}

So (subject to some technical conditions) F is globally G Markov if and only if

fX (x) ∝ ψ12 (x1, x2)ψ13 (x1, x3)ψ24 (x2, x4)ψ35 (x3, x5)ψ256 (x2, x5, x6)

for some positive functions ψ12, ψ13, , ψ24, ψ35, and ψ256.

6 The Practice of Bayes Inference 3: (Mostly)
Multi-Sample Models

Essentially everything that is done in M.S. level statistical methods courses like
Stat 500 and Stat 511 (and more besides) can be recast in a Bayes framework
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and addressed using the kind of methods discussed thus far in this outline. We
proceed to indicate how some of these analyses can be built.

6.1 Two-Sample Normal Models (and Some Comments on
"Nested" Models)

Several versions of two-sample univariate normal models are possible. That
is, suppose that observable Y = (Y 1,Y 2) consists of iid univariate N

(
µ1, σ

2
1

)
variables Y11, Y12, . . . , Y1n1 independent of iid univariate N

(
µ2, σ

2
2

)
variables

Y21, Y22, . . . , Y2n2 . The joint pdf of Y is then

f
(
y|µ1, µ2, σ21, σ22

)
=

(
1√

2πσ21

)n1
exp

(
−
∑n1
j=1 (y1j − µ1)

2

2σ21

)

×
(

1√
2πσ22

)n2
exp

(
−
∑n2
j=1 (y2j − µ2)

2

2σ22

)
(55)

Depending then upon what one wishes to assume about the 4 parameters
µ1, µ2, σ

2
1, and σ

2
2 there are submodels of the full model specified by this joint

density (55) that might be considered. There is the full 4-parameter model
that we will here term modelM1 with likelihood

L
(
µ1, µ2, σ

2
1, σ

2
2

)
= f

(
y|µ1, µ2, σ21, σ22

)
It is fairly common to make the model assumption that σ21 = σ22 = σ2, thereby
producing a 3-parameter model that we will call modelM2 with likelihood

L
(
µ1, µ2, σ

2
)

= f
(
y|µ1, µ2, σ2, σ2

)
In both modelsM1 andM2, primary interest usually centers on how µ1 and
µ2 compare. The assumption µ1 = µ2 imposed on µ1 and µ2 in model M2

produces the one sample univariate normal model of Section 4.3 that we might
call modelM3.
"Obvious" priors for

(
µ1, µ2, σ

2
1, σ

2
2

)
in model M1 or

(
µ1, µ2, σ

2
)
in model

M2 can be built using the pieces introduced in Section 4.3. In particular, priors
(improper or proper) of "independence" (of product form) for the parameters
seem attractive/simple, where

1. means are a priori either "iid" uniform on < (or some large interval) or
are iid normal (typically with large variance), and

2. logvariance(s) is (are) a priori either uniform on < (or some large interval)
or variance(s) is (are) inverse gamma, i.e. scaled inverse χ2 (typically with
small degrees of freedom).

Models M1,M2, and M3 are nested. But under priors like those just
suggested forM1,M2 (and thereforeM3) has prior and posterior probability
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0. So a Bayes "test ofM2 in modelM1" can never decide in favor of "exactly
M2." Similarly, under priors like those just suggested for M2, M3 has prior
and posterior probability 0. So a Bayes "test of µ1 = µ2 in model M2" can
never decide in favor of "exactly µ1 = µ2."
This situation is a simple illustration of the fact that in a Bayesian context,

rational consideration of whether a lower dimensional submodel of the working
model is plausible must be typically be done by either explicitly placing positive
probability on the submodel or by taking some other approach. The Bayes
factors of Section 3.5 can be employed. Or sticking strictly to calculations
with the working model, one can assess the posterior probability "near" the
submodel.
Take for explicit example the case of working modelM2 and submodelM3.

If one wants to allow for positive posterior probability to be assigned to the
submodel, one will need to do something like assign prior probability p to the
working model and then a prior distribution for µ1, µ2, and σ

2 in the working
model, together with prior probability 1 − p to the submodel and then a prior
distribution for µ = µ1 = µ2, and σ

2 in the submodel. Lacking this kind of
explicit weighting ofM2 andM3, one might find a Bayes factor for comparing
Bayes models for M2 and M3. Or, working entirely within model M2, one
might simply find a posterior distribution of µ1 − µ2 and investigate how much
posterior probability for this variable there is near the value µ1 − µ2 = 0.

6.2 r-Sample Normal Models

This is the natural generalization of the two sample normal model just discussed.
Y = (Y 1,Y 2, . . . ,Y r) is assumed to consist of r independent vectors, where
Y i = (Yi1, Yi2, . . . , Yini) has iid N

(
µi, σ

2
i

)
components. The joint pdf for Y is

then

f
(
y|µ1, . . . , µr, σ21, . . . , σ2r

)
=

r∏
i=1

(
1√

2πσ2i

)ni
exp

(
−
∑ni
j=1 (yij − µi)

2

2σ2i

)

and the most commonly used version of this model is one where one assumes
that σ21 = σ22 = · · · = σ2r = σ2 and thus has a model with r + 1 parameters and
likelihood

L
(
µ1, . . . , µr, σ

2
)

= f
(
y|µ1, . . . , µr, σ2, . . . , σ2

)
Exactly as in the two-sample case, "obvious" priors for

(
µ1, . . . , µr, σ

2
)
can

be built using the pieces introduced in Section 4.3. In particular, priors (im-
proper or proper) of "independence" (of product form) for the parameters seem
attractive/simple, where

1. means are a priori either "iid" uniform on < (or some large interval) or
are iid normal (typically with large variance), and

2. lnσ2 is a priori either uniform on < (or some large interval) or σ2 is inverse
gamma, i.e. scaled inverse χ2 (typically with small degrees of freedom).
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(Of course, if one doesn’t wish to make the constant variance assumption, it is
possible to make use independent priors of the type in 2. above for r different
variances.)

6.3 Normal Linear Models (Regression Models)

The first half of Stat 511 concerns statistical analysis based on the linear model

Y
n×1

= X
n×k

β
k×1

+ ε
n×1

for ε ∼MVNn
(
0, σ2I

)
and known matrix X (that for present purposes we will

assume has full rank). This implies that Y ∼MVNn
(
Xβ, σ2I

)
so that this

model has parameters β and σ2 and likelihood

L
(
β, σ2

)
=

(
1√

2πσ2

)n
exp

(
− 1

2σ2
(y−Xβ)

′
(y−Xβ)

)
(With proper choice of X this is well known to include the constant variance
cases of the two- and r-sample normal models just discussed.)
The most obvious priors for

(
β, σ2

)
are of a product/independence form,

where

1. β is either uniform on <k (or some large k-dimensional rectangle) or is
MVNk (typically with large covariance matrix), and

2. lnσ2 is a priori either uniform on < (or some large interval) or σ2 is inverse
gamma, i.e. scaled inverse χ2 (typically with small degrees of freedom).

The textbook in Section 14.2 considers the case of the improper prior

g
(
β, σ2

)
∝ 1

σ2
(56)

and argues that with this choice, the conditional distribution of σ2|Y = y is

Inv-χ2
(
n− k, s2

)
where

s2 =
1

n− k

(
y−Xβ̂

)′ (
y−Xβ̂

)
for β̂ =

(
X ′X

)−1
X ′y the least squares estimate of β. (s2 is the usual linear

model estimate of σ2.) Further, the conditional distribution of
(
β − β̂

)
|Y = y

is multivariate t. That is, the posterior distribution of β is that of

β̂ + s
((
X ′X

)−1)1/2√n− k
W

Z
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where Z is a k-vector of iid N(0, 1) random variables, independent ofW ∼ χ2n−k
and

((
X ′X

)−1)1/2
is a matrix square root of

(
X ′X

)−1
.

Further, if xnew is k × 1 and one has not yet observed

ynew = x′newβ + εnew

for εnew independent of ε
n×1

with mean 0 and variance γσ2, one might consider

the posterior predictive distribution of ynew based on the improper prior (56).
As it turns out, the posterior distribution is that of

x′new β̂ + s

√
x′new

(
X ′X

)−1
xnew + γ T

for T ∼ tn−k.
The upshot of all this is that Bayes credible intervals for model parameters

(and linear combinations of elements of the vector β) and future observations
based on the improper prior (56) for any full rank linear model are the same
as confidence intervals based on the usual Stat 511 linear model theory. (This,
of course, is true for the (constant variance) one-, two-, and r-sample normal
models, as they are instances of this model.) A clear advantage of taking
this Bayes point of view is that beyond the "ordinary" inference formulas of
Stat 511, one can easily simulate the posterior distribution of any parametric
function h

(
β, σ2

)
and provide credible sets for this.

6.4 One-Way Random Effects Models

The standard r-sample normal model of Section 6.2 is often written in the form

Yij = µi + εij (57)

where the εij are iid N
(
0, σ2

)
(and as before, µ1, . . . , µr, σ

2 are unknown para-
meters). The one-way random effects model treats µ1, . . . , µr as unobservable
iid random draws from a N

(
µ, σ2τ

)
distribution, producing a model with para-

meters
µ, σ2τ , and σ

2 (58)

Considering only the observables Yij , the joint distribution of these is multivari-
ate normal where the mean vector is µ1 and the covariance matrix has diagonal
entries

VarYij = σ2τ + σ2

and off-diagonal elements

Cov (Yij , Yij′) = σ2τ (if j 6= j′) and Cov (Yij , Yi′j′) = 0 (if i 6= i′)

However, particularly for purposes of setting up a WinBUGS/OpenBUGS simula-
tion from a posterior distribution, it is often very convenient to use the un-
observable auxiliary variables µ1, . . . , µr. (See Section 3.7 regarding the use
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of auxiliary variables.) Further, just as in classical treatments of this model
that often include prediction of the random effects, there may be independent
interest in the realized but unobservable/latent values µ1, . . . , µr.
Whether one models only in terms of the observables or includes the unob-

servable µ1, . . . , µr, ultimately the one-way random effects model has only the
3 parameters (58). Once again, choices of joint priors (improper or proper) of
"independence" (of product form) for the parameters seem attractive/simple.
Standard choices would seem to be

1. µ a priori either uniform on < (or some large interval) or normal (typically
with large variance), and

2. lnσ2 a priori either uniform on < (or some large interval) or the variance
σ2 inverse gamma, i.e. scaled inverse χ2 (typically with small degrees of
freedom).

It turns out that (as discussed in detail by Gelman in his 2006 Bayesian Analy-
sis paper "Prior distributions for variance parameters in hierarchical models")
setting an improper prior on the variance component σ2τ must be done with
care. An attempt to make lnσ2τ uniform on < produces an improper posterior.
Use of a (proper) inverse gamma prior for σ2τ is possible, but doesn’t seem to
be favored by Gelman. Rather, Gelman seems to prefer an improper prior for
σ uniform on (0,∞) for fairly large r (in any case, r ≥ 3 is needed to produce
a proper posterior) and a scaled folded Cauchy prior if r is not very big.
The formal connection (57) between the one-way random effects model here

and the r-sample normal model in Section 6.2 invites consideration of how the
present modeling might be appropriate in the earlier r-sample (fixed effects)
context. Formally, a Bayes version of the present one-way random effects model
with unobservable/latent auxiliary variables µ1, . . . , µr might be thought of as
an alternative Bayes model for the r-sample normal situation, where instead
of the prior of independence for the r means, one uses a prior of conditional
independence given parameters µ and σ2τ , and puts priors on these. This kind
of modeling might be termed use of a two stage prior or hyper-prior in
the fixed effects model. (The values µ and σ2τ , as parameters of the first-level
prior on the r means that themselves get prior distributions, are termed hyper-
parameters in this kind of language.) The ultimate effect of such modeling is
that instead of making the r means a priori independent, they are dependent.
Posterior means for µ1, . . . , µr tend to be shrunken from the r sample means
toward a common compromise value representing one’s perception of µ (whereas
if a proper normal prior for them is used in the style of the discussion of Section
6.2, the shrinking is towards the known prior mean).
This discussion should not be allowed to obscure the basic fact that the

"data models," corresponding parameters, and likelihoods here and in Section
6.2 are fundamentally different, a point that is very important to philosophical
anti-Bayesians. (It is much less important to most Bayesians, for whom the
distinction between unknown parameters and unobserved auxiliary variables is
quite unimportant, if not completely artificial.) In the r-sample model there
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are r unknown means and one unknown variance parameter. Here there is a
single unknown mean and two unknown variance parameters.

6.5 Hierarchical Models (Normal and Others)

The kind of hierarchy of parameters and auxiliary variables just illustrated in
the one-way random effects model can be generalized/extended in at least two
directions. First, more levels of hierarchy can be appropriate. Second, the con-
ditional distributions involved can be other than normal. This section provides
a small introduction to these possibilities.
We consider a context where (more or less in "tree diagram fashion") each

level of some factor A gives rise to levels (peculiar to the given level of A) of a
factor B, which in turn each gives rise to levels (peculiar to the given level of B
within A) of a factor C, etc. and at the end of each branch, there is some kind
of observation. For example, heats of steel (A) could be poured into ingots
(B), which are in turn are cut into specimens (C), on which carbon content is
measured. Or work weeks (A) have days (B), which have in them hours of
production (C), in which items (D) are produced and subjected to some final
product test like a "blemish count." Notice that in the first of these examples,
a normal measurement (of carbon content) might ultimately be made, while in
the second, a Poisson model for each blemish count might be appropriate.
To be slightly more concrete, let us consider a hierarchical situation involving

factors A, B, and C, with (possibly multivariate)

Yijk = the data observed at level k of factor C within level j of factor B

within level i of factor A

A hierarchical model for the entire set of observables is then constructed as
follows. Suppose that the distribution of Yijk depends upon some parameter
γijk and possibly a parameter c, and that conditional on the γijk’s and c, the
Yijk’s are independent. Then, in the obvious (abused) notation, a conditional
density for the observables becomes

f (y|γ, c) =
∏
i,j,k

f
(
yijk|γijk, c

)
Then we suppose that for some parameters βij and possibly a parameter b, the
γijk’are conditionally independent, the distribution of each γijk governed by
its βij and b. That is, the conditional density for the γijk’s becomes (again in
obvious notation)

f (γ|β, b) =
∏
i,j,k

f
(
γijk|βij , b

)
And then we suppose that for some parameters αi and possibly a parameter a
the βij’s are conditionally independent, the distribution of each βij governed
by its αi and a. So the conditional density for the βij’s becomes

f (β|α,a) =
∏
i,j

f
(
βij |αi,a

)
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Finally, we suppose that conditional on a parameter vector θ, the αi are con-
ditionally independent. So the conditional density for αi’s becomes

f (α|θ) =
∏
i

f (αi|θ)

The joint density for all of the Yijk’s, γijk’s, and βij’s and αi’s is then

f (y,γ,β,α|c, b,a,θ) = f (y|γ, c) f (γ|β, b) f (β|α,a) f (α|θ) (59)

Notice that this form is consistent with a directed graph representing the joint
distribution of the Yijk’s, γijk’s, and βij’s and αi’s where

1. each Yijk has parent γijk

2. each γijk has parent βij

3. each βij has parent αi

This is illustrated in the small example in Figure 11.

Figure 11: A Small Hierarchical Structure and Directed Graph

The hierarchical form indicated in (59) has parameter θ (and possibly pa-
rameters a, b, and c). A Bayes analysis of a hierarchical data structure then
requires specifying a prior for θ and if relevant a, b, and c. This would put
θ onto a directed graph like that in Figure 11 as a parent of all αi’s, a as a
parent of all βij’s, b as a parent of all γijk’s, and c as a parent of all Yijk’s.
The Bayes modeling thus breaks the independence of the two main branches of
the directed graph in Figure 11 and makes all of the data relevant in inferences
about all of the quantities represented on the figure and all the parameters.
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6.6 Mixed Linear Models (in General) (and Other MVN
Models With Patterned Means and Covariance Ma-
trices)

The normal one-way random effects model of Section 6.4 is not only a special
case of the hierarchical modeling just discussed in Section 6.5, it is a special
case of the so called mixed linear model of Stat 511. That is, it is also a special
case of a model that is usually represented as

Y
n×1

= X
n×k

β
k×1

+ Z
n×q

u
q×1

+ ε
n×1

where X and Z are known matrices, β is a parameter vector and

(
u
ε

)
∼ MVNq+n

0,

 G
q×q

0
q×n

0
n×q

R
n×n


from which Y is multivariate normal with

EY = Xβ and VarY = ZGZ ′ +R ≡ V

In typical applications of this model, the covariance matrix V is a patterned
function of several variance components, say σ2 =

(
σ21, σ

2
2, . . . , σ

2
p

)
, and we

might then write V
(
σ2
)
. This then produces a likelihood based on the multi-

variate normal density

L
(
β,σ2

)
∝
∣∣detV

(
σ2
)∣∣−1/2 exp

(
−1

2
(y −Xβ)

′
V
(
σ2
)−1

(y −Xβ)

)
As in Sections 6.3 and 6.4 the most obvious priors for

(
β,σ2

)
are of a prod-

uct/independence form, where

1. β is either uniform on <k (or some large k-dimensional rectangle) or is
MVNk (typically with large covariance matrix), and

2. each σ2i is a priori inverse gamma, i.e. scaled inverse χ
2 (typically with

small degrees of freedom).

In the event that one wishes to use improper priors for the variance components,
the concerns of Section 6.4 regarding propriety of the posterior become relevant.
Only a variance component associated with iid entries of ε can be handled by
the device of a uniform-on-< prior for a log variance. Presumably one must
proceed with caution regarding the other variance components. Uniform priors
for standard deviations may be possible in some cases. (When they are not,
the Gelman proper-scaled-folded-Cauchy idea may be effective.)
Notice that although only Y is observable, just as noted in the specific mixed

model of Section 6.4, there may be good reasons to include the vector of random
effects u in a posterior simulation. There may be independent interest in these.
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And since common models for u make its components independent (and thus
G diagonal) and simply assembles linear combinations of these in the definition
of the entries of Y , the coding of a model that includes these variables may be
operationally much simpler than coding of the multivariate normal form for Y
alone.
One way to look at the mixed linear model is that it is a multivariate normal

model with both mean vector and covariance matrix that are parametric func-
tions. There are problems where one observes one or more multivariate normal
vectors that don’t fit the completely-unrestricted-mean-and-covariance-matrix
context of Section 4.4 or the linear-mean-and-patterned-function-of-variances
context of mixed linear models. Instead, for some parameter vector θ and
parametric forms for a mean vector µ (θ) and covariance matrix Σ (θ), one ob-
serves n ≥ 1 iid multivariate normal vectors Y 1,Y 2, . . . ,Y n and has likelihood

L (θ) ∝ |det Σ (θ)|−n/2 exp

(
−1

2

n∑
i=1

(yi − µ (θ))
′
Σ (θ)

−1
(yi − µ (θ))

)
Consideration of the particulars of the situation being modeled and physical
meanings of the coordinates of θ can then sometimes be called on to produce a
plausible prior for θ and then a Bayes analysis.

6.7 Non-Linear Regression Models, etc.

A natural generalization of the linear model discussed in Section 6.3 (and a
special case of the parametric mean vector and covariance matrix multivariate
normal inference problem just alluded to) is a model where the means of n inde-
pendent univariate normal observations yi depend upon corresponding k-vectors
of predictors xi and some parameter vector β through a function m (x,β), and
the variances are some constant σ2. This is usually written as

yi = m (xi,β) + εi

where the εi are iid N
(
0, σ2

)
. This produces a likelihood that is

L
(
β, σ2

)
=
(
2πσ2

)−n/2
exp

(
− 1

2σ2

n∑
i=1

(yi −m (xi,β))
2

)
(The usual normal linear model is the case where x and β have the same di-
mension and m (xi,β) = x′iβ.)
For a Bayes analysis in this context, a prior distribution is needed for

(
β, σ2

)
.

A product (independence between β and σ2) form seems most obvious where

1. consideration of the particulars of the situation being modeled and phys-
ical meanings of the coordinates of β can then sometimes be called on to
produce a plausible prior for β, and

2. lnσ2 is a priori either uniform on < (or some large interval) or σ2 is inverse
gamma, i.e. scaled inverse χ2 (typically with small degrees of freedom).

64



The main point here is that operationally, where non-Bayesian analyses for the
linear and non-linear regression models are quite different (for example different
software and theory), Bayes analyses for the linear and non-linear regression
models are not substantially different.
Notice too that mixed effects versions of non-linear regression models are

available by assuming that ε is a MVNn
(
0,V

(
σ2
))
vector of random effects

with patterned covariance matrix V
(
σ2
)
depending upon a vector of variance

components σ2 =
(
σ21, σ

2
2, . . . , σ

2
p

)
. The parameters for which one needs to

specify a prior are β and σ2, and this is a special case of the "Other MVNModels
With Patterned Means and Covariance Matrices" discussion of the previous
section.

6.8 Generalized Linear Models, etc.

The intent of the so-called "generalized linear model" introduced in Stat 511 is to
extend regression/linear models type modeling of the effects of covariates beyond
the realm of normal observations, particularly to cases of discrete (binomial
and Poisson) responses. In the generalized linear model, one assumes that n
independent univariate (binomial or Poisson) observations yi have distributions
depending upon corresponding k-vectors of predictors xi and some parameter
vector β through some appropriate "link" function h (·). That is, one assumes
that

Eyi = h−1 (x′iβ)

Probably the most common Poisson version of the generalized linear model
is the case where one assumes that

Eyi = exp (x′iβ)

which is the case of the so-called "log-linear model." Notice that the joint pmf
for an n-vector of observations under the log-linear model is then

f (y|β) =
n∏
i=1

exp (− exp (x′iβ)) (exp (x′iβ))
yi

yi!

(more generally, one replaces exp (x′iβ) with h−1 (x′iβ)). So the likelihood
under the log-linear model is

L (β) =

n∏
i=1

exp (− exp (x′iβ)) (exp (x′iβ))
yi

yi!

and upon making some choice of (proper) prior distribution for β, say MVNk
with large covariance matrix or uniform on a large but bounded part of <k (one
would need to think about whether an improper "flat" prior on <k for β will
produce a proper posterior), a Bayes analysis will proceed as usual.
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This could be easily extended to a mixed effects version by assuming that
for ε some MVNn

(
0,V

(
σ2
))
vector of random effects with patterned covari-

ance matrix V
(
σ2
)
depending upon a vector of variance components σ2 =(

σ21, σ
2
2, . . . , σ

2
p

)
, conditional on ε the yi are independent with

yi ∼ Poisson (exp (x′iβ + εi))

This would produce a model with parameters β and σ2 that could be handled
in WinBUGS/OpenBUGS by including in the analysis the auxiliary variables in ε
(or likely even more fundamental independent mean 0 normal random effects
that when added appropriately produce ε with the desired patterned covariance
matrix). That is, in principle, there is no special diffi culty involved in handling
regression type or even mixed effects type modeling and analysis of Poisson
responses from a Bayes viewpoint.
Common binomial versions of the generalized linear model set the binomial

"success probability" parameter p to be

pi =
exp (x′iβ)

1 + exp (x′iβ)

(the case of so-called "logistic regression") or

pi = Φ (x′iβ)

(the case of so-called "probit analysis") or

pi = 1− exp (− exp (x′iβ))

(the case of the "complimentary log log" link). Under any of these, a joint pmf
for n independent binomial observations yi is

f (y|β) =

n∏
i=1

(
ni
yi

)
pyii (1− pi)ni−yi

and the likelihood is thus

L (β) =

n∏
i=1

(
ni
yi

)
pyii (1− pi)ni−yi

Again upon making some prior assumption (like multivariate normal, uniform
on a subset of <k or possibly uniform on all of <k) on β, a Bayes analysis is
in principle straightforward. And just as discussed above in the Poisson case,
the generalization to a random or mixed effects version is available by replacing
x′iβ with x

′
iβ + εi in any of the expressions for pi above.

Finally, notice that from the point of view of simulation-based Bayes analysis
that doesn’t require that one develop specialized inference methods or distrib-
ution theory before doing statistical analysis, there is not even anything special
about the linear form x′iβ appearing in the expressions of this section. It is
conceptually no more diffi cult to replace x′iβ with an expression like m (xi,β)
than it was in the normal non-linear regression case of Section 6.7.
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6.9 Models With Order Restrictions

The following is a bit of an amplification of the discussion of Section 3.3.3. As
indicated in that section, if a natural parameter space Θ ⊂ <k is of product
form but some Θ0 ⊂ Θ that is not of a product form is of real interest, direct
MCMC simulation from a posterior on Θ0 may not be obvious. But if h (θ)
specifies a posterior on Θ, one can sample from the posterior specified by

h (θ) I [θ ∈ Θ0]

by sampling instead from h (θ) and simply "throwing away" those MCMC it-
erates θj that do not belong to Θ0. As indicated in Section 3.3.3 this can be
done in WinBUGS/OpenBUGS using coda to transfer iterates to R.
The other way to address this kind of issue is to find a parameterization that

avoids it altogether. Consider, for example, what is possible for the common
type of order restriction

θ1 ≤ θ2 ≤ · · · ≤ θk

1. Where Θ = <k, one can define

δi = θi − θi−1 for i = 2, 3, . . . , k

(so that θj = θ1 +
∑j
i=2 δi for j ≥ 2) and replace the parameter vector

θ with the parameter vector (θ1, δ2, . . . , δk) ∈ < × [0,∞)
k−1. Placing a

prior distribution of product form on < × [0,∞)
k−1 leads to a posterior

on a product space and straightforward posterior simulation.

2. Where Θ = (0,∞)
k, one can do essentially as in 1., or parametrize in ratio

form. That is, with

ri =
θi
θi−1

for i = 2, 3, . . . , k

(so that θj = θ1 ·
∏j
i=2 ri for j ≥ 2), one may replace the parameter

vector θ with the parameter vector (θ1, r2, . . . , rk) ∈ (0,∞) × [1,∞)
k−1.

Placing a prior distribution of product form on (0,∞)× [1,∞)
k−1 leads to

a posterior on a product space and straightforward posterior simulation.

3. Where Θ = (0, 1)
k, a modification of the ratio idea can be used. That is,

with

di =
θi
θi+1

for i = 1, 2, . . . , k − 1

(so that θj = θk ·
∏k−1
i=j di for j ≤ k − 1), one may replace the parameter

vector θ with the parameter vector (d1, d2, . . . , dk−1, θk) ∈ (0, 1]
k. Placing

a prior distribution of product form on (0, 1]
k leads to a posterior on a

product space and straightforward posterior simulation.

Of course the reparameterization ideas above are not specifically or essentially
Bayesian, but they are especially helpful in the Bayes context.
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6.10 One-Sample Mixture Models

For pdf’s f1, f2, . . . , fM and α = (α1, α2, . . . , αM ) a probability vector (each
αi ≥ 0 and

∑M
i=1 αi = 1), a pdf

fα =

M∑
i=1

αifi (60)

specifies a so-called "mixture distribution." In cases where the fi are completely
specified and linearly independent functions, (frequentist or) Bayes estimation
of α is straightforward. On the other hand, where each fi is parameterized by
a (potentially multivariate) parameter γi and the whole vector

θ = (α,γ1,γ2, . . . ,γM )

is unknown, the problem is typically technically more diffi cult.
In the first place, there are often identifiability problems (see Section 3.3.1)

unless one is careful. For example, as suggested in Section 3.3.1, in a problem
where M = 2, f1 is N

(
µ1, σ

2
1

)
and f2 is N

(
µ2, σ

2
2

)
, with all of α1, µ1, σ

2
1, µ2, and

σ22 unknown, the parameter vectors(
α1, µ1, σ

2
1, µ2, σ

2
2

)
= (.3, 1, 1, 2, 1)

and (
α1, µ1, σ

2
1, µ2, σ

2
2

)
= (.7, 2, 1, 1, 1)

produce the same mixture distribution. In order to avoid this kind of diffi culty,
one must do something like parameterize not by the two means, but rather by
the smaller of the two means and the difference between the larger and the
smaller of the means.
The form (60) can be thought of as the density of an observable Y generated

by first generating I from {1, 2, . . . ,M} according to the distribution specified
by α, and then conditional on I, generating Y according to the density fI .
Then given an iid sample from fα, say Y = (Y1, Y2, . . . , Yn), this motivates
associating with each Yj a (potentially completely fictitious) auxiliary variable
Ij indicating which fi gave rise to Yj . Bayes analyses of mixture samples
typically make use of such variables. And this perspective begins to perhaps
motivate a well known diffi culty often encountered Bayes analyses of the one-
sample mixture problem. That is that unless one constrains α (either by use
of a very strong prior essentially outlawing the possibility that any αi = 0, or
by simply adopting a parameter space that is bounded away from cases where
any αi = 0) to prevent "extreme" mixture parameters and cases where not all
of the elements of {1, 2, . . . ,M} are represented in {I1, I2, . . . , In}, a posterior
sampling algorithm can behave badly. Degenerate submodels of the full mixture
model (60) that have one or more αi = 0 can act (at least for practical purposes)
as "absorbing states" for MCMC algorithms. In the language of Definition 15
on page 82, the chains in effect fail to be "irreducible."
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6.11 "Bayes" Analysis for Inference About a Function g (t)

An interesting application of random process theory and what are really Bayes
ideas is to the estimation/interpolation of values of a function g (t) for t ∈ (a, b)
(possibly observed with error) from values at some points in (a, b). (A t ∈ <k
version of what follows can be created using the ideas in the present "func-
tion of a single real variable" version, but the simplest case will suffi ce here.)
This kind of material is very important in modern "analysis of computer ex-
periments" applications, where in order to evaluate g (t) a long and therefore
expensive computer run is required. It is then desirable to get a few val-
ues of g and use them to derive some cheap/computationally simple interpola-
tor/approximator/surrogate for g at other values of t.
So suppose that for

t1 < t2 < · · · < tk

one calculates or observes

g (t1) , g (t2) , . . . , g (tk) (61)

or perhaps
g (t1) + ε1, g (t2) + ε2, . . . , g (tk) + εk (62)

where one might model the εi as iid N
(
0, σ2

)
random variables, and that one

wishes to estimate/predict g (t∗) for some t∗ ∈ (a, b). A way to use Bayes
machinery and the theory of stationary Gaussian random processes here is to
model and calculate as follows.
I might invent a "prior" for the function g (·) by

1. specifying my best prior guess at the function g (·) as µ (·),

2. writing
g (t) = µ (t) + (g (t)− µ (t)) = µ (t) + γ (t)

and

3. modeling γ (t) as a mean 0 stationary Gaussian process.

Item 3. here means that we assume that Eγ (t) = 0 ∀t, Varγ (t) = τ2 ∀t, for
some positive definite function ρ (∆) taking values in (0, 1) (a mathematically
valid correlation function)

Cov (γ (t) , γ (t′)) = τ2ρ (|t− t′|)

and that for any finite number of values t, the joint distribution of the corre-
sponding γ (t)’s is multivariate normal. Standard choices of the function ρ (∆)
are exp (−β∆) and exp

(
−β∆2

)
. (The first tends to produce "rougher" realiza-

tions than does the second. In both cases, the positive parameter β governs how
fast correlation dies off as a function of distance between to values t and t′.) In
this model for γ (t), τ2 in some sense quantifies overall uncertainty about g (t),
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the form of ρ (∆) can be made to reflect what one expects in terms of smooth-
ness/roughness of deviations of g (t) from µ (t), and for a typical choice of ρ (∆),
a parameter β governs how fast (as one moves away from one of t1, t2. . . . , tk) a
prediction of g (t) should move toward µ (t).
Then, say in the case (61) where there are no errors of observation, with t∗

different from any of t1, t2. . . . , tk, the model here (a prior for g (t)) implies that
g (t1)
...

g (tk)
g (t∗)

 ∼ MVNk+1



µ (t1)
...

µ (tk)
µ (t∗)

 ,Σ

 (63)

for
Σ

(k+1)×(k+1)
= τ2 (ρ (|ti − tj |))i=1,...,k+1

j=1,...,k+1
(64)

with the understanding that we are letting tk+1 = t∗. Then multivariate normal
theory gives fairly simple formulas for the conditional distribution of part of the
multivariate normal vector given the value of the rest of the vector. That is, it is
straightforward to find from (63) the normal conditional (posterior) distribution
of

g (t∗) | (g (t1) , g (t2) , . . . , g (tk))

This, in turn, produces plausibility statements about the unevaluated g (t∗).
The case (62) is much the same. The only differences are that the covari-

ance matrix for (g (t1) + ε1, g (t2) + ε2, . . . , g (tk) + εk, g (t∗)) is not Σ specified
in (64), but rather

Σ∗ = Σ + diag
(
σ2, σ2, . . . , σ2, 0

)
and that one is concerned with the conditional distribution of

g (t∗) | (g (t1) + ε1, g (t2) + ε2, . . . , g (tk) + εk)

for purposes of prediction/interpolation at t∗.

7 Bayesian Nonparametrics

This section outlines an introduction to Bayesian analysis of some "nonpara-
metric" and "semi-parametric" models. The standard textbook reference for
such material is Bayesian Nonparametrics by Ghosh and Ramamoorthi and the
topics here are discussed in Chapter 3 of that book. The basic concern is distri-
butions on (and thus "priors" on) distributions F (a cdf, or P the corresponding
"probability measure" that assigns probabilities to sets of outcomes, B) where
F (or P ) is not confined to any relatively simple parametric family (like the
Gaussian, the Weibull, the beta, etc.)
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7.1 Dirichlet and Finite "Stick-Breaking" Processes

Suppose that α (·) is a multiple of a probability distribution on < (meaning that
it assigns "mass" to subsets of < like a probability distribution does, but is not
necessarily normalized to have total mass 1, i.e. potentially α (<) 6= 1). (Much
of what follows could be done in <d, but for simplicity of exposition, we will
here work in 1 dimension.) It turns out to be "mathematically OK" to invent
a probability distribution for P (or F ) (itself a probability distribution on <)
by specifying that for any partition of < into a finite number of disjoint sets
B1, B2, . . . , Bk with

⋃k
i=1B = <, the vector of probabilities that P assigns to

these sets is Dirichlet distributed with parameters specified by α, that is

(P (B1) , P (B2) , . . . , P (Bk)) ∼ Dirichletk (α (B1) , α (B2) , . . . , α (Bk)) (65)

When (65) holds for all such partitions of <, we’ll say that P is a Dirichlet
process on < with parameter measure α, and write

P ∼ Dα

Now the defining property (65) doesn’t give one much feeling about what real-
izations from Dα "look like," but it does turn out to be very tractable and enable
the proof of all sorts of interesting and useful facts about Dirichlet processes,
and particularly about models where

P ∼ Dα (66)

and conditioned on P ,

Y1, Y2, . . . , Yn ∼ iid P (or F ) (67)

(this is the one-sample model where P or F has the "prior" Dα).
Some Dirichlet process facts are:

1. If P (or F )∼ Dα there is the "neutral to the right property" that says for
t1 < t2 < · · · < tk, the random variables

(1− F (t1)) ,
1− F (t2)

1− F (t1)
,

1− F (t3)

1− F (t2)
, . . . ,

1− F (tk)

1− F (tk−1)

are independent.

2. Under the assumptions (66) and (67), the posterior for P is also a Dirichlet
process, that is

P | (Y1, Y2, . . . , Yn) ∼ D(α+
∑n
i=1 δYi)

for δYi a unit point mass distribution located at Yi. That is, the posterior
for P is derived from the prior for P by updating the "parameter" measure
by the addition of unit point masses at each observation.
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3. It follows directly from 2. and (65) under the assumptions (66) and (67),
that conditioned on Y1, Y2, . . . , Yn the variable F (t) = P ((−∞, t]) is Beta
and has mean

E (F (t) |Y1, Y2, . . . , Yn) =
α ((−∞, t]) +

∑n
i=1 δYi ((−∞, t])

α (<) + n

=
α (<)

α (<) + n
· α ((−∞, t])

α (<)
+

n

α (<) + n
· # [Yi ≤ t]

n

That is, this conditional mean is a weighted average of the probability that
a normalized version of α assigns to (−∞, t] and the relative frequency with
which the observations Yi are in (−∞, t], where the weights are α (<) (the
prior mass) and n (the sample size).

4. It similarly follows from 2. (and the fact that if P ∼ Dα and Y |P ∼ P
then Y ∼ α/α (<)) that under the assumptions (66) and (67), (posterior)
predictive distributions are tractable. That is

Yn+1| (Y1, Y2, . . . , Yn) ∼ α+
∑n
i=1 δYi

α (<) + n

(Yn+1 has a predictive distribution that is a normalized version of the
parameter measure of the posterior.)

5. Despite the fact that 4. has a "sequential" nature, under assumptions (66)
and (67), the marginal of (Y1, Y2, . . . , Yn) is "exchangeable"/symmetric.
Every Yi has the same marginal, every pair (Yi, Yi′) has the same bivariate
distribution, etc.

6. Probably the initially least appealing elementary fact about Dirichlet
processes is that with probability 1 their realizations are discrete. That
is

Dα ({discrete distributions on <} = 1)

(P generated according to a Dirichlet "prior" is sure to be concentrated
on a countable set of values.)

More insight into fact 6. above and ultimately motivation for other related
nonparametric priors for probability distributions is provided by an important
representation theorem of Sethuraman. Dα has a representation as a "stick-
breaking prior" as follows. Suppose that

X1, X2, X3, . . . are iid according to
1

α (<)
α

independent of
θ1, θ2, θ3, . . . that are iid Beta (1, α (<))

Set

p1 = θ1 and pm = θm

m−1∏
i=1

(1− θi) ∀m > 1
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(these probabilities pm are created in "stick-breaking" fashion). Then the
(random) probability distribution

P ≡
∞∑
m=1

pmδXm ∼ Dα (68)

This representation says that to simulate a realization from Dα, one places
probability mass θ1 at X1, then places a fraction θ2 of the remaining probability
mass at X2, then places a fraction θ3 of the remaining probability mass at X3,
etc.
Representation (68) (involving as it does an infinite sum) is nothing that

can be used in practical computations/data analysis. But it motivates the
consideration of something that can be used in practice, namely a truncated
version of P that has not a countable number of discrete components, but only
a finite number, N , instead. That is, suppose that

X1, X2, X3, . . . , XN are iid according to
1

α (<)
α

independent of

θ1, θ2, θ3, . . . , θN−1 that are iid Beta (1, α (<))

Set

pm = θm

m−1∏
i=1

(1− θi) ∀1 ≤ m < N and pN =

N−1∏
i=1

(1− θi)

and define

PN =

N∑
m=1

pmδXm

Presumably, for "large" N , in some appropriate sense PN ∼̇Dα.
A natural generalization of this "truncated Dirichlet process" idea can be

formulated as follows. Let γ =
(
γ1, γ2, . . . , γN−1

)
and α = (α1, α2, . . . , αN−1)

be vectors of positive constants. For

X1, X2, X3, . . . , XN iid according to a probability distribution H (69)

independent of

θi for i = 1, . . . , N − 1 independent Beta (γi, αi) variables (70)

set

pm = θm

m−1∏
i=1

(1− θi) ∀1 ≤ m < N and pN =

N−1∏
i=1

(1− θi)

and define

PN =

N∑
m=1

pmδXm (71)
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Figure 12: A 3-Level Binary Tree

One might say that
PN ∼ SB (N,H,γ, α)

i.e. that PN is a general N component stick-breaking process.
The beauty of representation (71) is that it involves only the N ordinary

random variables (69) and the N − 1 ordinary random variables (70). So it
can be used to specify nonparametric components of practically implementable
Bayes models and thus be used in data analysis.

7.2 Polya Tree Processes

A second nonparametric way of specifying a distribution on distributions is
through the use of so-called "Polya trees." We begin the exposition of Polya
tree processes with a small relatively concrete example.
Suppose that one has in mind 8 real numbers x1 < x2 < · · · < x8 and is

interested in distributions over distributions on these values. (Actually, it is
not at all essential that these x’s are real numbers rather than just arbitrary
"points," but with an eye to the ultimate application we might as well think
of them as ordered real numbers.) For convenience, we will rename the values
with binary labels and think of them at the bottom of a binary tree as in Figure
12.
The p’s marked on Figure 12 are meant to add to 1 in the obvious pairs

(p0 + p1 = 1, p00 + p01 = 1, p10 + p11 = 1, etc.). For fixed values of these, the
tree structure in the figure can be used to define a probability distribution over
the 8 elements at the bottom of the tree according to the prescription "multiply
p’s on the branches you take to go from the top to a given final node." That is,
with ε = (ε1, ε2, ε3) ∈ {0, 1}3 the p’s define a probability distribution on ε’s by

P ({ε}) = pε1pε1ε2pε1ε2ε3 (72)

Then, if one places an appropriate probability distribution on the set of p’s,
one has placed a distribution on the distribution P . In fact, since the p’s with
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labels ending in 0 are 1 minus the corresponding p’s where the label is changed
only by switching the last digit, one needs only to place a joint distribution on
the p’s with labels ending in 1.
A so-called "Polya tree" method of endowing the p’s with a distribution is

to assume that those with labels ending in 1 are independent Beta variables.
That is, for ε some string of zeros and ones of length 0, 1, or 2 (so that ε1 and
ε0 are strings of zeros and ones of length 1, 2, or 3) suppose that the

pε1 ∼ ind Beta (αε1, αε0) (73)

(for parameters αε1 and αε0). Letting α stand for the whole collection of α’s
(two for each pε1) we will say that the distribution over distributions P of the
form (72) produced by this assumption is a PT 3 (α) process. (P is a simple
"finite Polya tree" process.)
The form (72) and assumptions (73) immediately produce the result that for

P ∼ PT 3 (α),

EP ({ε}) =

(
αε1

α1 + α0

)(
αε1ε2

αε11 + αε10

)(
αε1ε2ε3

αε1ε21 + αε1ε20

)
(74)

If conditioned on P variable Y is P distributed and P ∼ PT 3 (α), it is imme-
diate that the marginal probabilities for Y are also given by (74).
Next observe that if P ∼ PT 3 (α) and conditional on P , Y ∼ P , for p the

set of pε1’s, a joint density for p and Y is proportional to the product(∏
ε

(
pαε1−1ε1 pαε0−1ε0

))
(pε1pε1ε2pε1ε2ε3) (75)

(In (75) the product in the first term is over ε’s of length 0 through 2.) The
first term of (75) is proportional to the joint density of p’s and the second is the
pmf for Y . It is then obvious that the posterior distribution of P |Y is again a
Polya tree process. That is because with ε a vector of 1, 2, or 3 zeros and ones
and

∆ε (Y ) ≡
{

1 if the first part of Y is ε
0 otherwise

,

conditioned on Y = (ε1, ε2, ε3)

pε1 ∼ ind Beta (αε1 + ∆ε1 (Y ) , αε0 + αε1 + ∆ε0 (Y ))

That is, in order to update a PT 3 (α) "prior" for P to a posterior, one simply
looks through the tree adding 1 to each α traversed to produce Y .

The conjugacy of the Polya tree process and the form (72) for a single obser-
vation obviously generalizes to Y1, Y2, . . . , Yn iid according to P defined in (72)
and further allows for easy identification of posterior predictive distributions.
That is, adopt the notation

α⊕∆ (Y1, Y2, . . . , Yn)
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for a set of α’s updated by adding to each αε a count of the number of Yi’s
that involve use of the corresponding branch of the tree. If P ∼ PT 3 (α) and
conditioned on P the Y1, Y2, . . . , Yn are iid according to P , the posterior of P
is PT 3 (α⊕∆ (Y1, Y2, . . . , Yn)). Further, if P ∼ PT 3 (α) and conditioned
on P the Y1, Y2, . . . , Yn, Ynew are iid P , the posterior predictive distribution of
Ynew | (Y1, Y2, . . . , Yn) is specified by

Pr [Ynew = (ε1, ε2, ε3) | (Y1, Y2, . . . , Yn)] =

(
αε1 +

∑n
i=1 ∆ε1 (Yi)

α1 + α0 + n

)
×
(

αε1ε2 +
∑n
i=1 ∆ε1ε2 (Yi)

αε11 + αε10 +
∑n
i=1 ∆ε1 (Yi)

)
×
(

αε1ε2ε3 +
∑n
i=1 ∆ε1ε2ε3 (Yi)

αε1ε21 + αε1ε20 +
∑n
i=1 ∆ε1ε2 (Yi)

)
which is in some sense the generalization of the statement that (74) gives
marginal probabilities for Y if given P , variable Y has distribution P and
P ∼ PT 3 (α).
An important question is how one might sensibly choose the parameters α

for a PT 3 (α) process (or differently put, what are the consequences of various
choices). To begin, formula (74) shows how the mean of P distribution values
depends upon the choice of α If one has in mind some "best guess" distribution
H (·) it is simple to choose α to produce EP ({ε}) = H ({ε}) ∀ε ∈ {0, 1}3. This
is accomplished by choosing elements in α so that

α1
α0

=
H ({100, 101, 110, 111})
H ({000, 001, 010, 011}) ,

α01
α00

=
H ({010, 011})
H ({000, 001}) ,

α11
α10

=
H ({110, 111})
H ({100, 101}) ,

α001
α000

=
H ({001})
H ({000}) ,

α011
α010

=
H ({011})
H ({010}) ,

α101
α100

=
H ({101})
H ({100}) , and

α111
α110

=
H ({111})
H ({110}) .

Any pairs of α’s with the correct ratios will do to produce a Polya tree process
with mean H (·), and subject to these ratio relationships, one is still free to
choose, say, the sums

α0 + α1, α00 + α01, α10 + α11, α000 + α001,

α010 + α011, α100 + α101, and α110 + α111 (76)

to govern how variable realizations P from PT 3 (α) are and "at what scale(s)"
they vary the most.
To understand this last point, note that if U ∼Beta(γ, δ), if I fix γ/δ I have

fixed
γ/δ

1 + γ/δ
=

γ

γ + δ
= EU ,

but that the larger is γ+δ, the smaller is VarU. So in the PT 3 (α) context, the
larger are the sums αε1+αε0, the less variable are the realizations P . (And in the
case where conditioned on P variables Y1, Y2, . . . , Yn are iid P , the less strongly
the posterior is pulled from the prior mean H toward the empirical distribution
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of the Yi’s.) Control of the scales at which P varies (or the posterior is pulled
toward the empirical distribution of the Yi’s) can be made via control of the
relative sizes of these sums at different levels in the tree. For example, for a
given mean H for P ,

1. the sum α0 + α1 being large in comparison to the other sums in (76)
allows the "left and right half total P probability" to vary little from
the corresponding "left and right half total H probability" but allows the
details within those "halves" to vary relatively substantially (so posterior
left and right half totals stay near H totals, but the specifics of posterior
probabilities within the halves can become approximately proportional to
the empirical frequency pattern of Yi’s within the halves), and

2. the sum α0+α1 being small in comparison to the other sums in (76) allows
the "left and right half total P probability" to fluctuate substantially, but
forces the patterns within those halves to be like those of the mean H (so
posterior left and right half totals are pulled toward the sample fractions,
but the specifics of posterior probabilities within the halves are pulled
towards being in proportion to those of the prior mean distribution, H).

In keeping with the qualitative notion that a sample Y1, Y2, . . . , Yn should pro-
vide less and less information about the finer and finer detail of P ∼ PT 3 (α) as
one goes further down the tree (and one must thus lean more and more heavily
on prior assumptions) it is more or less conventional to make αε0 +αε1 increase
in the length of ε (the depth one is at in the tree).
The issue of how to take the basic idea illustrated with the foregoing small 8

point example and make a general tool for Bayes data analysis for distributions
on < from it can be attacked in at least 2 ways. The simplest is to spread a
power of 2 (say 2k) values xi across a part of < thought to contain essentially all
the probability of an unknown probability distribution and use a finite PT k (α)
process on those points as a nonparametric prior over distributions (on the 2k

points) that might approximate the unknown one. A second more interesting
one is to use (approximate truncated versions) of a general Polya tree process
on <. In the balance of this discussion we consider this second possibility.

Definition of a Polya tree process on < depends upon the choice of a nested
set of partitions of <. That is, let

1. B0 and B1 be disjoint sets with B0 ∪B1 = <,

2. B00 and B01 be disjoint sets with B00 ∪ B01 = B0, and B10 and B11 be
disjoint sets with B10 ∪B11 = B1, and

3. ∀k ≥ 2 and ε ∈ {0, 1}k Bε0 and Bε1 be disjoint sets with Bε0 ∪Bε1 = Bε.

Then consider an infinite set of independent random variables

pε1 ∼ Beta (αε1, αε0)
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for each ε a (possibly degenerate) finite vector of zeros and ones (for positive
constants αε1 and αε0). Define a (random) set of conditional probabilities

P (Bε1|Bε) = pε1

These specifications in turn imply (random) P probabilities for all of the sets
Bε. For example, much as in (72) for any ε = (ε1, ε2, . . . , εk) ∈ {0, 1}k

P (Bε) = pε1pε1ε2 · · · pε1ε2···εk
Theorem 3.3.2 of Ghosh and Ramamoorthi then says that under quite mild
conditions on the set of α’s this random set of probabilities on the sets Bε
extends to a random distribution P giving probabilities not just to sets Bε but
to all (measurable) subsets of <, and we can term that a realization from a
PT (α) process.
Of course (involving as it does limits and "infinities") this definition of a

PT (α) process on < can not be used exactly in real data analysis. An ap-
proximation to it that can be used in practice is this. For H a desired mean
distribution on <, suppose that for ε’s vectors of zeros and ones of lengths no
more than k, we have defined Bε’s, pε’s and P (Bε)’s as above with α’s chosen
to make

EP (Bε) = H (Bε)

Then for any ε of length k and A ⊂ Bε, define

P (A|Bε) =
H (A)

H (Bε)

This works to define a random process for assigning probabilities to all subsets
of <. In particular, in cases where H has pdf h, this random distribution on <
has (random, because the P (Bε) are random) pdf defined piecewise by

fk (y) = P (Bε)
h(y)

H (Bε)
for y ∈ Bε (for all ε ∈ {0, 1}k )

(This is P (Bε) times the H conditional density over Bε.)
If this model is used to do data analysis based on Y1, Y2, . . . , Yn iid according

to P , to get a posterior for P , the original α’s are simply updated as in the first
PT 3 (α) example above according to counts of Yi’s falling into the Bε (for
all ε ∈ {0, 1}k). The posterior is then of the "approximate PT (α)" type just
described. The "posterior mean pdf" (and posterior predictive density for Ynew)
under this structure is defined piecewise by

E [P (Bε) |Y1, Y2, . . . , Yn]
h(y)

H (Bε)
for y ∈ Bε

where E[P (Bε) |Y1, Y2, . . . , Yn] is of a form similar to (74) but based on the
updated α’s.
A particularly attractive choice of the partitions leading to a PT (α) process

on < (and thus to a truncation of it) in the case that H has density h that is
positive exactly at every point of the (potentially infinite) interval (a, b) is
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1. B0 =
(
a,H−1

(
1
2

)]
and B1 =

(
H−1

(
1
2

)
, b
)
,

2. B00 =
(
a,H−1

(
1
4

)]
, B01 =

(
H−1

(
1
4

)
, H−1

(
1
2

)]
, B10 =

(
H−1

(
1
2

)
, H−1

(
3
4

)]
,

and
(
H−1

(
3
4

)
, b
)
,

and so on. This not only provides a natural set of partitions, but suggests the
choices αε1 = αε0 and thus all Epε1 = 1/2 under the Polya scheme (making
EP (Bε) = H (Bε) the power of 1/2 corresponding to the length of ε). In
keeping with a desire for (relatively) smooth (though admittedly only piecewise
continuous) posterior mean densities and the kind of considerations discussed
for choice of the α’s for PT 3 (α), it is conventional to make αε0 + αε1 increase
in the length of ε (increase with depth in the tree) and in particular, growth of
the sum at a "squared length of ε rate" is often recommended.

8 Some Scraps (WinBUGS/OpenBUGS and Other)

8.1 The "Zeroes Trick" and "dloglik"

WinBUGS is a very flexible/general program. But it obviously can not automat-
ically handle every distribution one could invent and want to use as part of one
of its models. That is, there is sometimes a need to include some non-standard
factor h1 (η) in an expression

h (η) = h1 (η)h2 (η)

from which one wishes to sample. (For example, one might invent a nonstandard
prior distribution specified by g (θ) that needs to be combined with a likelihood
L (θ) in order to create a product L (θ) g (θ) proportional to a posterior density
from which samples need to be drawn.) Obviously, in such cases one will
somehow need to code a formula for h1 (η) and get it used as a factor in a
formula for h (η). The WinBUGS method of doing this is to employ "the zeroes
trick" based on the use of a fictitious Poisson observation with fictitious observed
value 0.
That is, a Poisson variable X with mean λ has probability of taking the

value 0
Pλ [X = 0] = exp (−λ)

So if in addition to all else one does in a WinBUGS model statement, one specifies
that a variable Y is Poisson with mean

c− ln (h1 (η))

and gives the program "data" that says Y = 0, the overall effect is to include a
multiplicative factor of

exp (−c+ ln (h1 (η))) = exp (−c)h1 (η)
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in the h (η) from which WinBUGS samples. Notice that since WinBUGS expects
a positive mean for a Poisson variable, one will typically have to use a non-zero
value of c when employing the "trick" with

c > max
η

ln (h1 (η))

in order to prevent WinBUGS from balking at some point in its Gibbs iterations.
OpenBUGS provides a straightforward implementation of this basic idea, through

its "dloglik" distribution. See the "Generic sampling distribution" and
"Specifying a new prior distribution" sections of the OpenBUGS manual
for details.

8.2 Convenient Parametric Forms for Sums and Products

In building probability models (including "Bayes" models that treat parameters
as random variables) it is often convenient to be able to think of a variable as a
sum or product of independent pieces that "combine nicely," i.e. to be able to
model Y as either

X1 +X2 + · · ·+Xk (77)

or as
X1 ·X2 · · · · ·Xk (78)

for independent Xi with suitable marginal distributions. It is thus useful to
review and extend a bit of Stat 542 probability that is relevant in accomplishing
this.
For the case of (77) recall that

1. X1 ∼N
(
µ1, σ

2
1

)
independent of X2 ∼N

(
µ2, σ

2
2

)
implies that Y = X1 +

X2 ∼N
(
µ1 + µ2, σ

2
1 + σ22

)
producing a fact useful when one is modeling a

continuous variable taking values in all of <,

2. X1 ∼Poisson(λ1) independent of X2 ∼Poisson(λ2) implies that Y = X1 +
X2 ∼Poisson(λ1 + λ2) producing a fact useful when one is modeling a
discrete variable taking values in {0, 1, 2, . . .}, and

3. X1 ∼ Γ (α1, β) independent of X2 ∼ Γ (α2, β) implies that Y = X1+X2 ∼
Γ (α1 + α2, β) producing a fact useful when one is modeling a continuous
variable taking values in (0,∞).

And, of course, the facts 1) that independent Binomial variables the same suc-
cess probability add to give another Binomial variable with that success proba-
bility and 2) that independent negative Binomials (or geometrics) with a com-
mon success probability add to give a negative Binomial variable with that
success probability are sometimes helpful.
For purposes of convenient modeling of products (78), one can make use of

facts about sums and the exponential function (i.e. the fact that exponentiation
turns sums into products). That is, if

Xi = exp (X ′i)
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then
Y = X1 ·X2 · · · · ·Xk = exp (X ′1 +X ′2 + · · ·+X ′k)

so facts about convenient forms for sums have corresponding facts about con-
venient product forms. Using 1. and 3. above, one has for example

1. X ′ ∼N
(
µ, σ2

)
implies that X = exp (X ′) has what is typically called a

"lognormal" distribution on (0,∞) and the product of independent log-
normal variables is again lognormal,

2. X ′ ∼ Γ (α, β) implies that X = exp (X ′) has what is might be called a
"log-gamma" distribution on (1,∞) and the product of independent log-
gamma variables with a common β is again log-gamma, and

3. X ′ ∼ Γ (α, β) implies that X = exp (−X ′) has what is might be called
a "negative log-gamma" distribution on (0, 1) and the product of inde-
pendent negative log-gamma variables with a common β is again negative
log-gamma.

This last fact can be useful, for example, when modeling the reliability of series
systems (where system reliability is assumed to be the product of component
reliabilities).

9 Some Theory of MCMC for Discrete Cases

The following exposition for discrete cases of h (η) is based on old ISU lecture
notes obtained from Noel Cressie. (Parallel theory for general cases can be
found in Luke Tierney’s December 1994 Annals of Statistics paper.)

9.1 General Theory

The question addressed here is how the theory of Markov Chains is useful in
the simulation of realizations from a (joint) distribution for η specified by a
function h (η) proportional to a "density" (here a pmf).

Definition 12 A (discrete time/discrete state space) Markov Chain is a se-
quence of random quantities {ηk}, each taking values in a (finite or) countable
set X , with the property that

P [ηk = xk|η1 = x1, ...,η
k−1 = xk−1] = P [ηk = xk|ηk−1 = xk−1] .

Definition 13 A Markov Chain is stationary provided P [ηk = xk|ηk−1 =
xk−1] is independent of k.

WOLOG we will for the time being name the elements of X with the integers
1, 2, 3, ... and call them “states.”
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Definition 14 With pij
.
= P [ηk = j|ηk−1 = i], the square matrix P .

= (pij)
is called the transition matrix for a stationary Markov Chain and the pij are
called transition probabilities.

Note that a transition matrix has nonnegative entries and row sums of 1.
Such matrices are often called “stochastic”matrices. As a matter of further
notation for a stationary Markov Chain, let

ptij = P [ηt+k = j|ηk = i]

(this is the i, j entry of the tth power of P , P t =

t factors︷ ︸︸ ︷
P · P · · · · · P ) and

f tij = P [ηk+t = j,ηk+t−1 6= j, ...,ηk+1 6= j|ηk = i] .

(These are respectively the probabilities of moving from i to j in t steps and
first moving from i to j in t steps.)

Definition 15 We say that a MC is irreducible if for each i and j ∃ t (possibly
depending upon i and j) such that ptij > 0.

(A chain is irreducible if it is possible to eventually get from any state i to any
other state j.)

Definition 16 We say that the ith state of a MC is transient if
∑∞
t=1 f

t
ii < 1

and say that the state is persistent if
∑∞
t=1 f

t
ii = 1. A chain is called persistent

if all of its states are persistent.

(A state is transient if once in it, there is some possibility that the chain will
never return. A state is persistent if once in it, the chain will with certainty be
in it again.)

Definition 17 We say that state i of a MC has period t if psii = 0 unless s = νt
(s is a multiple of t) and t is the largest integer with this property. The state
is aperiodic if no such t > 1 exists. And a MC is called aperiodic if all of its
states are aperiodic.

Many sources (including Chapter 15 of the 3rd Edition of Feller Volume 1)
present a number of useful simple results about MC’s. Among them are the
following.

Theorem 18 All states of an irreducible MC are of the same type (with regard
to persistence and periodicity).

Theorem 19 A finite state space irreducible MC is persistent.
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Theorem 20 Suppose that a MC is irreducible, aperiodic, and persistent. Sup-
pose further that for each state i the mean recurrence time is finite, i.e.

∞∑
t=1

tf tii <∞ .

Then an invariant/stationary distribution for the MC exists, i.e. ∃ {uj} with
uj > 0 and

∑
uj = 1 such that

uj =
∑
i

uipij .

(If the chain is started with distribution {uj}, after one transition it is in states
1, 2, 3, . . . with probabilities {uj}.) Further, this distribution{uj} satisfies

uj = lim
t→∞

ptij ∀ i ,

and
uj =

1∑∞
t=1 tf

t
jj

.

There is a converse of this theorem.

Theorem 21 An irreducible, aperiodic MC for which ∃ {uj} with uj > 0 and∑
uj = 1 such that uj =

∑
i uipij must be persistent with uj = 1∑∞

t=1 tf
t
jj
.

And there is an important “ergodic” result that guarantees that “time av-
erages”have the right limits.

Theorem 22 Under the hypotheses of Theorem 20, if g is a real-valued function
such that ∑

j

|g(j)|uj <∞

then for any j, if η0 = j

P

 1

n

n∑
k=1

g(ηk)→
∑
j

g(j)uj

 = 1

(Note that the choice of g as an indicator provides approximations for stationary
probabilities.)
With this background, the basic idea of MCMC for Bayes computation is

the following. If we wish to simulate from a distribution {uj} with

uj ∝ h (j) (79)

or approximate properties of the distribution that can be expressed as moments
of some function g (j), we find a convenient P whose invariant distribution is
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{uj}. From a starting state η0 = i, we use P to generate a value for η1. Using
the realization of η1 and P , we generate η2, etc. Then one applies Theorem
22 to approximate the quantity of interest.
In answer to the question of "How does one argue that the common algo-

rithms of Bayes computation have P’s with invariant distribution proportional
to {h (j)}?" there is the following useful suffi cient condition (that has appli-
cation in the original motivating problem of simulating from high dimensional
distributions) for a chain to have {uj} for an invariant distribution.

Lemma 23 If {ηk} is a MC with transition probabilities satisfying

uipij = ujpji , (80)

then it has invariant distribution {uj}.

Note then that if a candidate P satisfies (80) and is irreducible and aperiodic,
Theorem 21 shows that it is persistent. Theorem 20 then shows that any
arbitrary starting value can be used and yields approximate realizations from
{uj} and Theorem 22 implies that “time averages”can be used to approximate
properties of {uj}. Of course, in the Bayes context, it is distributions (79) that
are of interest in MCMC from a posterior.

9.2 Application to the Metropolis-Hastings Algorithm

Sometimes MCMC schemes useful in Bayes computation can be shown to have
the “correct” invariant distributions by observing that they satisfy (80). For
example, Lemma 23 can be applied to the Metropolis-Hastings Algorithm. That
is, let T = (tij) be any stochastic matrix corresponding to an irreducible ape-
riodic MC. This specifies, for each i, a jumping distribution. Note that in a
finite case, one can take tij = 1/(the number of states). As indicated in Section
2.4, the Metropolis-Hastings algorithm operates as follows:

• Supposing that ηk−1 = i, generate J (at random) according to the distri-
bution over the state space specified by row i of T (that is, according to
{tij}).

• Then generate ηk based on i and (the randomly generated) J according
to

ηk =

 J with probability min
(

1, uJ tJiuitiJ

)
i with probability max

(
0, 1− uJ tJi

uitiJ

) (81)

Note that for {ηk} so generated, for j 6= i

pij = P [ηk = j|ηk−1 = i] = min

(
1,
ujtji
uitij

)
tij
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and

pii = P [ηk = i|ηk−1 = i] = tii +
∑
j 6=i

max

(
0, 1− ujtji

uitij

)
tij .

So, for i 6= j

uipij = min(uitij , ujtji) = ujpji .

That is, (80) holds and the MC {ηk} has stationary distribution {uj}. (Further,
the assumption that T corresponds to an irreducible aperiodic chain implies that
{ηk} is irreducible and aperiodic.)
As indicated in Section 2.4, in order to use the Metropolis-Hastings Algo-

rithm one only has to know the uj’s up to a multiplicative constant. If (79)
holds

uJ
ui

=
h (J)

h (i)

we may write (81) as

ηk =

 J with probability min
(

1, h(J)tJih(i)tiJ

)
i with probability max

(
0, 1− h(J)tJi

h(i)tiJ

) (82)

Notice also that if T is symmetric, (i.e. tij = tji and the jumping distribution
is symmetric), (82) reduces to the Metropolis algorithm with

ηk =

 J with probability min
(

1, h(J)h(i)

)
i with probability max

(
0, 1− h(J)

h(i)

)
A variant of the Metropolis-Hastings algorithm is the “Barker Algorithm.”

The Barker algorithm modifies the above by replacing

min

(
1,
uJ tJi
uitiJ

)
with

uJ tJi
uitiJ + uJ tJi

and

max

(
0, 1− uJ tJi

uitiJ

)
with

uitiJ
uitiJ + uJ tJi

in (81). Note that for this algorithm, for j 6= i

pij =

(
ujtji

uitij + ujtji

)
tij ,

so

uipij =
(uitij)(ujtji)

uitij + ujtji
= ujpji .

That is, (80) holds and thus Lemma 23 guarantees that under the Barker algo-
rithm {ηk} has invariant distribution {uj}. (And T irreducible and aperiodic
continues to imply that {ηk} is also irreducible and aperiodic.)
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Note also that since

ujtji
uitij + ujtji

=

uj
ui
tji

tij +
uj
ui
tji

once again it suffi ces to know the uj up to a multiplicative constant in order to
implement Barker’s algorithm. In the Bayes posterior simulation context, this
means that the Barker analogue of the Metropolis-Hastings form (82) is

ηk =

{
J with probability h(J)tJi

h(i)tiJ+h(J)tJi

i with probability h(i)tiJ
h(i)tiJ+h(J)tJi

(83)

and if T is symmetric, (83) becomes

ηk =

{
J with probability h(J)

h(i)+h(J)

i with probability h(i)
h(i)+h(J)

9.3 Application to the Gibbs Sampler

Consider now the Gibbs Sampler (of Section 2.2). For sake of concreteness,
consider the situation where the distribution of a discrete 3-dimensional random
vector η = (η1, η2, η3)with probability mass function proportional to h (η) is at
issue. One defines a MC {ηk} as follows. For an arbitrary starting state
η0 =

(
η01, η

0
2, η

0
3

)
once one has ηk−1 =

(
ηk−11 , ηk−12 , ηk−13

)
:

• Generate ηk−11 =
(
ηk1 , η

k−1
2 , ηk−13

)
by generating ηk1 from the conditional

distribution of η1|η2 = ηk−12 and η3 = ηk−13 , i.e. from the (conditional) dis-

tribution with probability mass function hη1|η2,η3(η1|η
k−1
2 , ηk−13 )

.
=

h(η1,η
k−1
2 ,ηk−13 )∑

η1
h(η1,η

k−1
2 ,ηk−13 )

.

• Generate ηk−12 = (ηk1 , η
k
2 , η

k−1
3 ) by generating ηk2 from the conditional dis-

tribution of η2|η1 = ηk1 and η3 = ηk−13 , i.e. from the (conditional) distrib-

ution with probability function hη2|η1,η3(η2|η
k
1 , η

k−1
3 )

.
=

h(ηk1 ,η2,η
k−1
3 )∑

η2
h(ηk1 ,η2,η

k−1
3 )

.

• Generate ηk = (ηk1 , η
k
2 , η

k
3) by generating ηk3 from the conditional distrib-

ution of η3|η1 = ηk1 and η2 = ηk2 , i.e. from the (conditional) distribution

with probability function hη3|η1,η2(η3|η
k
1 , η

k
2)

.
=

h(ηk1 ,η
k
2 ,η3)∑

η3
h(ηk1 ,η

k
2 ,η3)

.

Note that with this algorithm, a typical transition probability (for a step
where a ηk−11 is going to be generated) is

P [ηk−11 =
(
η1, η

k−1
2 , ηk−13

)
|ηk−1 =

(
ηk−11 , ηk−12 , ηk−13

)
] =

h(η1, η
k−1
2 , ηk−13 )∑

η1
h(η1, η

k−1
2 , ηk−13 )

so if ηk−1 has distribution specified by h, the probability that ηk−11 = (η1, η2, η3)
is ∑

γ

h(γ, η2, η3)∑
γ,η2,η3

h(γ, η2, η3)

h(η1, η2, η3)∑
η1
h(η1, η2, η3)

=
h(η1, η2, η3)∑

η1,η2,η3
h(γ, η2, η3)
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so ηn also has distribution h And analogous results hold for the other two
types of transitions (where ηk−12 and ηk are to be generated). That is, direct
calculation (as opposed to the use of Lemma 23) shows that if P1, P2 and P3
are the 3 (different) transition matrices respectively for transitions ηk−1 →
ηk−11 ,ηk−11 → ηk−12 , and ηk−12 → ηk, they each have the distribution specified
by h as their invariant distributions. This means that the transition matrix for
ηk−1 → ηk, namely

P = P1P2P3

also has the distribution specified by h as its invariant distribution, and describes
a whole cycle of the Gibbs/Successive Substitution Sampling algorithm.

{
ηk
}
is

thus a stationary Markov Chainwith transition matrix P. So one is in a position
to apply Theorems 21 and 22. If P is irreducible and aperiodic (this has
to be checked), Theorem 21 says that the chain

{
ηk
}
is persistent and then

Theorems 20 and 22 say that observations from h can be simulated using an
arbitrary starting state.

9.4 Application toMetropolis-Hastings-in-Gibbs Algorithms

Consider now the kind of combination of Metropolis-Hastings and Gibbs sam-
pling algorithms considered in Section 2.5. For sake of concreteness, suppose
again that a discrete 3-dimensional random vector η = (η1, η2, η3)with proba-
bility mass function proportional to h (η) is at issue. Suppose further that it is
clear how to make η2 and η3 updates using conditionals of η2|η1, η3 and η3|η1, η2
(these are recognizable as of a standard form) but that a "Metropolis-Hastings
step" is to be used to make η1 updates.
For an arbitrary starting state η0 =

(
η01, η

0
2, η

0
3

)
once one has ηk−1 =(

ηk−11 , ηk−12 , ηk−13

)
, one first makes an η1 update as follows. Suppose that

for every pair (η2, η3),
t (η1, η

′
1|η2, η3)

specifies a transition matrix on the set of corresponding possible η1’s (for tran-
sitions η1 → η′1), and for safety sake, let’s require that all t (η1, η

′
1|η2, η3) > 0.

Then

• sample ηk∗1 from t
(
ηk−11 , ·|ηk−12 , ηk−13

)
, and

• set

ηk1 =

 ηk∗1 with probability min

(
1,

h(ηk∗1 ,ηk−12 ,ηk−13 )t(ηk∗1 ,ηk−11 |ηk−12 ,ηk−13 )
h(ηk−11 ,ηk−12 ,ηk−13 )t(ηk−11 ,ηk∗1 |η

k−1
2 ,ηk−13 )

)
ηk−11 otherwise

and then just as in Section 9.3,

• generate ηk2 from the conditional distribution of η2|η1 = ηk1 and η3 =
ηk−13 , i.e. from the (conditional) distribution with probability function

hη2|η1,η3(η2|η
k
1 , η

k−1
3 )

.
=

h(ηk1 ,η2,η
k−1
3 )∑

η2
h(ηk1 ,η2,η

k−1
3 )

and
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• generate ηk = (ηk1 , η
k
2 , η

k
3) by generating ηk3 from the conditional distrib-

ution of η3|η1 = ηk1 and η2 = ηk2 , i.e. from the (conditional) distribution

with probability function hη3|η1,η2(η3|η
k
1 , η

k
2)

.
=

h(ηk1 ,η
k
2 ,η3)∑

η3
h(ηk1 ,η

k
2 ,η3)

.

We have already argued that the two "straight Gibbs updates" above have
the distribution specified by h as their invariant distribution. We need to
argue that the first (Metropolis-Hastings) step leaves the distribution specified
by h invariant (notice that this is not obviously covered by the argument for
the overall Metropolis-Hastings algorithm offered in Section 9.2). So suppose
that ηk−1 has distribution specified by h and consider the distribution of ηk−11 =(
ηk1 , η

k−1
2 , ηk−13

)
obtained from ηk−1 by employing the Metropolis-Hastings step

to replace ηk−11 .

P
[
ηk−11 = (η′1, η2, η3)

]
=
∑
η1

P
[
ηk−1 = (η1, η2, η3)

]
·P [(η1, η2, η3)→ (η′1, η2, η3)]

where (η1, η2, η3) → (η′1, η2, η3) is shorthand for the Metropolis-Hastings step
resulting in the indicated transition. Then if κ =

∑
η h (η) so that it is 1κh that

is the pmf of interest,

κ · P
[
ηk−11 = (η′1, η2, η3)

]
=

∑
η1 6=η′1

h (η1, η2, η3) t (η1, η
′
1|η2, η3) min

(
1,
h (η′1, η2, η3) t (η′1, η1|η2, η3)
h (η1, η2, η3) t (η1, η

′
1|η2, η3)

)
+h (η′1, η2, η3) t (η′1, η

′
1|η2, η3) · 1

+h (η′1, η2, η3)
∑
η1 6=η′1

t (η′1, η1|η2, η3) max

(
0, 1− h (η1, η2, η3) t (η1, η

′
1|η2, η3)

h (η′1, η2, η3) t (η′1, η1|η2, η3)

)
=

∑
η1 6=η′1

min (h (η1, η2, η3) t (η1, η
′
1|η2, η3) , h (η′1, η2, η3) t (η′1, η1|η2, η3))

+h (η′1, η2, η3) t (η′1, η
′
1|η2, η3)

+
∑
η1 6=η′1

max (0, h (η′1, η2, η3) t (η′1, η1|η2, η3)− h (η1, η2, η3) t (η1, η
′
1|η2, η3))

= h (η′1, η2, η3) t (η′1, η
′
1|η2, η3) +

∑
η1 6=η′1

h (η′1, η2, η3) t (η′1, η1|η2, η3)

=
∑
η1

h (η′1, η2, η3) t (η′1, η1|η2, η3)

= h (η′1, η2, η3)

and ηk−11 =
(
ηk1 , η

k−1
2 , ηk−13

)
also has the distribution specified by h. That

is, the Metropolis-Hastings step leaves the distribution specified by h invariant.
This can be represented by some transition matrix P1 for the ηk−1 → ηk−11

transition. Then if as in Section 9.3, P2 and P3 represent respectively η
k−1
1 →

ηk−12 , and ηk−12 → ηk transitions, the whole transition matrix for ηk−1 → ηk

P = P1P2P3
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has the distribution specified by h as its invariant distribution, and describes a
complete cycle of the Metropolis-Hastings in Gibbs algorithm.

{
ηk
}
is thus a

stationary Markov Chainwith transition matrix P. So again one is in a position
to apply Theorems 21 and 22. If P is irreducible and aperiodic (this has
to be checked), Theorem 21 says that the chain

{
ηk
}
is persistent and then

Theorems 20 and 22 say that observations from h can be simulated using an
arbitrary starting state.

9.5 Application to "Alternating" Algorithms

The kind of logic used above in considering the Gibbs and Metropolis-Hastings-
in-Gibbs algorithms suggests another variant on MCMC for Bayes computation.
That is, one might think about alternating in some regular way between two or
more basic algorithms. That is, if PGibbs is a transition matrix for a complete
cycle of Gibbs substitutions and PM-H is a transition matrix for an iteration of
a Metropolis-Hastings algorithm, then

P = PGibbsPM-H

is a transition matrix for an algorithm that can be implemented by following
a Gibbs cycle with a Metropolis-Hastings iteration, followed by a Gibbs cycle
and so on. It’s possible that in some cases that such an alternating algorithm
might avoid diffi culties in "mixing" that would be encountered by either of the
component algorithms applied alone.
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