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Abstract

These notes summarize the main points of an MS-level statistics course
in time series analysis and forecasting. Material here has been drawn from
a variety of sources including especially the books by Brockwell and Davis,
the book by Madsen, and the book by Cryer and Chan.
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1 Notation, Preliminaries, etc.

The course is about the analysis of data collected over time. By far the best-
developed methods for such data are appropriate for univariate continuous ob-
servations collected at equally spaced time points, so that simply indexing the
observations with integers and talking about "time period t" is sensible. This
is where we’ll begin. So we’ll consider a (time) series of values

y1, y2, . . . , yn

and write

Y
n×1

=


y1

y2

...
yn

 (1)

Sometimes the purpose of time series analysis is more or less "scientific" and
amounts to simply understanding interpretable structure in the data. But by
far the most common use of time series methods is predicting/forecasting, and
very/most often the motivating application is economic in nature. We’ll feature
forecasting in this edition of Stat 551 and pay special attention to methods and
issues that arise in the practice of such forecasting. We begin with some basic
notation and ideas.

1.1 Linear Operations on Time Series

Basic data processing and modeling for time series involves "linear operators"
applied to them. In this context it turns out to be a mathematical convenience
(in the same way that calculus is a convenience for elementary science and
technology in spite of the fact that the world is probably not continuous but
rather discrete) to idealize most series as not finite in indexing, but rather doubly
infinite in indexing. That is, instead of series (1) we imagine series

Y =



...
y−2

y−1

y0

y1

y2

...


(2)

of which any real/observable series like (1) is a sub-vector. The vector (2) is
formally an element of an infinite-dimensional Euclidean space, <∞ (while the
observable vector (1) obviously belongs to n-space, <n).

One conceptual advantage of formally considering infinite series like (2)
is that operations often applied to time series can be thought of as opera-
tors/transformations/functions taking Y as an input and producing another
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element of <∞ as an output. Versions of those same operations applied to
finite vectors often lack meaning for at least some indices t.
So we consider linear operators/functions L on <∞ (or some appropriate

subset of it). These have the property that for constants a and b,

L (aY + bZ) = aL (Y ) + bL (Z)

As a matter of notation, we will often not write the parentheses in L (Y ),
preferring instead to write the simpler LY .
One particularly useful such operator is the backshift operator that es-

sentially takes every entry in an input series Y and moves it ahead one index
(slides the whole list of numbers in (2) "down" one slot). That is, using B to
stand for this operator, if Z = BY , then

zt = yt−1 ∀t

We note that some authors sloppily write as if this operator somehow operates
on individual values of a time series rather than on the whole series, writing
the (nonsensical) expression Byt = yt−1. (The expression (BY )t = yt−1 would
make sense, since it says that the t entry of the infinite vector Z = BY is yt−1,
the t− 1 entry of Y . But as it stands, the common notation is just confusing.)
The identity operator, I, is more or less obviously defined by IY = Y .

The composition of two (linear) operators, say L1 and L2, is what one gets
upon following one by the other (this is ordinary mathematical composition).
Employing parentheses for clarity

L1L2Y ≡ L1 ◦ L2 (Y ) = L1 (L2 (Y )) ∀Y

A linear combination of (linear) operators is defined in the obvious way
(in the same way that one defines linear combinations of finite-vector-valued
functions of finite vectors) by

(aL1 + bL2)Y ≡ aL1Y + bL2Y ∀Y

With these conventions, as long as one is careful not to reverse order of a
"product" of operators (remembering that the "product" is really composition
and composition doesn’t obviously commute) one can do "ordinary algebra" on
polynomials of operators (in the same way that one can do "ordinary algebra"
on matrices as long is one is careful to not do violence to orders of multiplication
of matrices).

1.1.1 Operators Based on the Backshift Operator

The facts above lead to a variety of interesting/useful operators, some based on
differencing. The first difference operator is

D = (I − B)
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If if Z = DY , then
zt = yt − yt−1 ∀t

(or (DY )t = yt − yt−1). The dth difference operator is defined by d com-
positions of the first difference operator

Dd = DD · · · D︸ ︷︷ ︸
d factors

For example, it’s easy to argue that if Z = D2Y then

zt = yt − 2yt−1 + yt−2 ∀t

(or
(
D2Y

)
t

= yt − 2yt−1 + yt−2). In contexts where one expects some kind of
"seasonality" in a time series at a spacing of s periods, a useful operator turns
out to be a seasonal difference operator of order s

Ds ≡ I − Bs

If Z = DsY then
zt = yt − yt−s ∀t

(or (DsY )t = yt − yt−s).
A generalization of these differencing operators that proves useful in time

series modeling is that of polynomial backshift operators. That is, one
might for example define an operator

Φ (B) = I−φ1B1 − φ2B2 − · · · − φpBp

for real constants φ1, φ2, . . . , φp. If Z = Φ (B)Y then

zt = yt − φ1yt−1 − φ2yt−2 − · · · − φpyt−p ∀t

(or (Φ (B)Y )t = yt − φ1yt−1 − φ2yt−2 − · · · − φpyt−p).
To take the polynomial backshift idea to its extreme, consider the expression

zt =

∞∑
s=−∞

ψsyt−s ∀t (3)

for some doubly infinite sequence of real constants . . . , ψ−2, ψ−1, ψ0, ψ1, ψ2, . . ..
Involving as it does infinite series, the expression (3) doesn’t even make sense
unless the ψt’s and yt’s fit together well enough to guarantee convergence. Let
us suppose that the weights ψt are absolutely summable, that is

∞∑
t=−∞

|ψt| <∞

Then the expression (3) at least makes sense if Y has entries bounded by some
finite number (i.e. provided one cannot find a divergent sub-sequence of entries
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of Y ). One can then define a linear operator, say L, on the part of <∞ satisfying
this boundedness condition using (3). That is, if Z = LY the entries of it are
given by (3)

(LY )t =

∞∑
s=−∞

ψsyt−s ∀t (4)

But this means that if we understand B0 to be I, B−1 to mean a forward shift
operator and B−k to be the k-fold composition of this with itself (producing a
forward shift by k places in the infinite vector being operated on)

L =

∞∑
s=−∞

ψsBt−s

and this operator is a limit of polynomial backshift operators.
An operator defined by (4) is variously known as a time-invariant linear

filter, a linear system, a linear transfer function, etc. It is apparently common
to note that if ∆0 is an element of <∞ with a 1 in the t = 0 position and 0’s
elsewhere,

(L∆0)t = ψt

so that L maps ∆0 onto a vector that has its defining coeffi cients as elements.
The "input" ∆0 might then be called a "unit impulse (at time 0)" and the
"output" vector of coeffi cients is often called the impulse response (function)
of the filter. Further, when all ψs for s < 0 are 0, so that (LY )t depends only
on those entries of Y with indices t or less, the linear filter L is sometimes called
causal or non-anticipatory.

1.1.2 Linear Operators and Inverses

It is often useful to consider "undoing" a linear operation. This possibility is
that of identifying an inverse (or at least a "left inverse") for a linear operator.
In passing we noted above the obvious fact that the backshift operator has an
inverse, the forward shift operator. That is, using F to stand for this operator,
if Z = FY ,

zt = yt+1 ∀t

(or (FY )t = yt+1). Then obviously FB = I and F is a left inverse for B.
It "undoes" the backshift operation. (It is also a right inverse for B and the
backshift operator undoes it.)
Functions don’t necessarily have inverses and linear operators don’t always

have inverses. (We’re going to argue below that linear operators can be thought
of as infinite-by-infinite matrices, and we all know that matrices don’t have to
have inverses.)
A very simple example that shows that even quite tame linear operators can

fail to have inverses is the case of the first difference operator. That is, consider
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the operator D. If DY = Z it is also the case that D (Y + c1) = Z for c any
scalar and 1 an infinite vector of 1’s. This is easily seen since

zt = yt − yt−1 + c (1− 1) = yt − yt−1

which means that (of course) there is no way to tell which vector has produced a
given set of successive differences. The first difference operator is not invertible.
(This is completely analogous to the fact that in calculus there are infinitely
many functions that have a given derivative function, all of them differing by a
constant. The first difference operator on time series is exactly analogous to
the derivative operator on ordinary functions of a single real variable.)
As a more substantial example of a linear operator for which one can find

an inverse, consider the operator I − φB for a real value φ with |φ| < 1 and a
causal linear filter L defined at least for those time series with bounded entries
by

(LY )t =

∞∑
s=0

φsyt−s ∀t (5)

(this is the case of filter (4) where ψt = 0 for t < 0 and ψt = φt otherwise).
Then notice that the t entry of

Z = L (I − φB)Y

is

zt =

∞∑
s=0

φs (yt−s − φyt−1−s)

=

∞∑
s=0

φsyt−s −
∞∑
s=0

φs+1yt−(s+1)

= yt

(where the breaking apart of the first series for zt into the difference of two
is permissible because the boundedness of the entries of Y together with the
fact that |φ| < 1 means that both of the sums in the difference are absolutely
convergent). So thinking about L and I−φB as operators on those elements of
<∞ with bounded entries, L functions as a left inverse for the operator I −φB.
Notice that in light of (5) we might then want to write something like

(I − φB)
−1

=

∞∑
s=0

φsBs (6)

As a practical matter one might for computational purposes truncate expression
(6) at some suffi ciently large upper limit to produce an approximate inverse for
I − φB.

It is possible to in some cases generalize the previous example. Consider for
real constants φ1, φ2, . . . , φp the operator

Φ (B) =

p∑
j=1

φjBj
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and the polynomial backshift operator

I − Φ (B) = I − φ1B − φ2B2 − · · · − φpBp

Then, define the finite series operator

Lk =

k∑
s=0

(Φ (B))
s (7)

and notice that

Lk (I − Φ (B)) = Lk −
(

k∑
s=0

(Φ (B))
s

)
Φ (B)

=

k∑
s=0

(Φ (B))
s −

k+1∑
s=1

(Φ (B))
s

= I − (Φ (B))
k+1

Now if the coeffi cients φ are such that with increasing k the operator (Φ (B))
k+1

becomes negligible, then we have that for large k the operator Lk is an approx-
imate inverse for I − Φ (B). We might in such cases write

(I − Φ (B))
−1

=

∞∑
s=0

(Φ (B))
s

Conditions on the coeffi cients φ that will make this all work are conditions that
guarantee that in some sense Φ (B)Y is smaller than Y . (Again consider the
p = 1 case above and the condition that |φ| < 1.)

Although Lk is a (conceptually simple) polynomial in the backshift operator
(of order pk) there is no obvious easy way to find the associated coeffi cients
or see limits for early ones. This particular exposition is then not so much a
practical development as it is one intended to provide insight into structure of
linear operators.
We proceed next to develop the connection between linear operators and

matrices, and note in advance that the invertibility of a linear operator on time
series is completely analogous to the invertibility of a finite square matrix.

1.1.3 Linear Operators and "Matrices"

In many respects, linear operators on <∞ amount to multiplication of infinitely
long vectors by infinite-by-infinite matrices. I find this insight helpful and will
demonstrate some of its use here. In order to make apparent where the "0 row"
and "0 column" of an infinite-by-infinite matrix are and where the "0 position"
of an infinitely long vector is, I will (in this discussion only) make bold face the
values in those rows, columns, and positions. Rows of the matrices should be
thought of as indexed from −∞ to ∞ top to bottom and columns indexed from
−∞ to ∞ left to right.
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First notice that one might conceive of the backshift operation in matrix
multiplication terms as

BY =



...
...

...
...

...
· · · 1 0 0 0 0 · · ·
· · · 0 1 0 0 0 · · ·
· · · 0 0 1 0 0 · · ·

...
...

...
...

...





...
y−2

y−1

y0

y1

y2

...


(as always, one lines up rows of the matrix alongside the vector and multiplies
values next to each other and sums those products, here being careful to get the
element in the 0 column positioned next to the t = 0 entry of the vector). In
contrast to this, the forward shift operation might be represented as

FY =



...
...

...
...

...
· · · 0 0 1 0 0 · · ·
· · · 0 0 0 1 0 · · ·
· · · 0 0 0 0 1 · · ·

...
...

...
...

...





...
y−2

y−1

y0

y1

y2

...


and, of course, the identity operation can be represented as

IY =



...
...

...
...

...
...

· · · 0 1 0 0 0 0 · · ·
· · · 0 0 1 0 0 0 · · ·
· · · 0 0 0 1 0 0 · · ·

...
...

...
...

...
...





...
y−2

y−1

y0

y1

y2

...


The operator I − φB might be represented by the matrix

...
...

...
...

...
· · · −φ 1 0 0 0 · · ·
· · · 0 −φ 1 0 0 · · ·
· · · 0 0 −φ 1 0 · · ·

...
...

...
...

...


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and its inverse operator might be represented by

...
...

...
...

...
...

· · · φ 1 0 0 0 0 · · ·
· · · φ2 φ 1 0 0 0 · · ·
· · · φ3 φ2 φ 1 0 0 · · ·

...
...

...
...

...
...


In fact, a general time-invariant linear filter might be represented by

...
...

...
...

...
· · · ψ1 ψ0 ψ−1 ψ−2 ψ−3 · · ·
· · · ψ2 ψ1 ψ0 ψ−1 ψ−2 · · ·
· · · ψ3 ψ2 ψ1 ψ0 ψ−1 · · ·

...
...

...
...

...


and the 0 column (or reversed 0 row) in the matrix gives the impulse response
function for the filter. Note that for two time-invariant linear filters, say A and
B, represented by say matrices

...
...

...
...

...
· · · α1 α0 α−1 α−2 α−3 · · ·
· · · α2 α1 α0 α−1 α−2 · · ·
· · · α3 α2 α1 α0 α−1 · · ·

...
...

...
...

...

 and



...
...

...
...

...
· · · β1 β0 β−1 β−2 β−3 · · ·
· · · β2 β1 β0 β−1 β−2 · · ·
· · · β3 β2 β1 β0 β−1 · · ·

...
...

...
...

...


the fact that BY can be represented by an infinite matrix multiplication (as
can AZ) means that the composition composition linear operator L = AB can
be represented by the product of the above matrices. The matrix representing
L has in its (t, s) position

lt,s =

∞∑
j=−∞

αt−jβ−s+j =

∞∑
l=−∞

αlβ(t−s)−l

That is, the product of the two infinite-by-infinite matrices representing L = AB
is

...
...

...
...

...
· · ·

∑∞
l=−∞ α−lβl+1

∑∞
l=−∞ α−lβl

∑∞
l=−∞α−lβl−1

∑∞
l=−∞ α−lβl−2

∑∞
l=−∞ α−lβl−3 · · ·

· · ·
∑∞
l=−∞α−lβl+2

∑∞
l=−∞α−lβl+1

∑∞
l=−∞α−lβl

∑∞
l=−∞α−lβl−1

∑∞
l=−∞α−lβl−2 · · ·

· · ·
∑∞
l=−∞ α−lβl+3

∑∞
l=−∞ α−lβl+2

∑∞
l=−∞α−lβl+1

∑∞
l=−∞ α−lβl

∑∞
l=−∞ α−lβl−1 · · ·

...
...

...
...

...


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It’s then the case that L is itself a time-invariant linear filter with

ψs = l0,−s =

∞∑
l=−∞

αlβs−l

(representing the convolution of the two impulse response functions) and ab-
solute summability of the α’s and β’s guarantees that of the ψ’s.

1.2 Initial Probability Modeling Ideas for Time Series

In one sense, there is nothing "new" in probability modeling for time series
beyond what is in a basic probability course. It is just multivariate probabil-
ity modeling. But there are some complicated things special to honoring the
significance of time ordering of the variables and dealing with the probability
implications of the "infinite sequence of variables" idealization (that is so con-
venient because linear operators are such nice tools for time series modeling
and data analysis). Before getting seriously into the details of modeling, and
inference and prediction based on the modeling, it seems potentially useful to
give a "50,000 ft" view of the landscape.
We first recall several basics of multivariate distributions/probability mod-

eling. For an n-dimensional random vector Y (we’re effectively now talking
about giving the series in (1) a probability distribution) with mean vector and
covariance matrix respectively

µ = EY =


Ey1

Ey2

...
Eyn

 =


µ1

µ2
...
µn

 and Σ = VarY = (Cov (yi, yj))i=1,...,n
j=1,...,n

and an n×n matrixM , the random vector Z = MY has mean and covariance
respectively

EZ = EMY = Mµ and VarZ = VarMY = MΣM ′

Focusing attention on only some of the entries of Y , we find ourselves talking
about a (joint, because more than one coordinate may be involved) marginal
distribution of the full model for Y . In terms of simply means and vari-
ances/covariances, the mean vector for a sub-vector of Y is simply the corre-
sponding sub-vector of µ, and the covariance matrix is obtained by deleting from
Σ all rows and columns corresponding to the elements of Y not of interest.
We mention these facts for n-dimensional distributions because a version of

them is true regarding models for the infinite-dimensional case as well. If we
can successfully define a distribution for the series (2) then linear operations
on it have means and variances/covariances that are easily understood from
those of the original model, and realizable/observable/finite parts (1) of the
series (2) have models (and means and covariances) that are just read directly
as marginals from the theoretically infinite-dimensional model.
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Much of statistical analysis conforms to a basic conceptualization that

what is observable = signal + noise

where the "signal" is often a mean that can be a parametric function of one or
more explanatory variables and the "noise" is ideally fairly small and "random."
Time series models don’t much depart from this paradigm except that because of
the relevance of time order, there can be much more potentially interesting and
useful structure attributed to the "noise." If departures from the norm/signal
in a time series tend to be correlated, then prediction of a "next" observation
can take account not only of signal/trend but also the nature of that correlation.
A basic kind of time series modeling then begins with a probability model

for an infinite vector of random variables

ε =



...
ε−2

ε−1

ε0
ε1
ε2
...


that has Eε = 0 and Varε = σ2I. These assumptions on ε about means and
variances are usually called white noise assumptions. (A model assumption
that the ε’s are iid/independent random draws from some distribution with
mean 0 and standard deviation σ implies the white noise conditions but isn’t
necessary to produce them.)
A way to move from uncorrelated noise to models with correlation between

successive observations is to consider

N ε

for some linear operator N that "works" (is mathematically convenient and
produces useful/appealing kinds of correlations). One might expect that if N
can be represented by an infinite-by-infinite matrixN and N ε makes sense with
probability 1 (the white noise model for ε can’t put positive probability on the
set of elements of <∞ for which the expression is meaningless)

VarN ε = Nσ2IN ′ = σ2NN ′

(provided I can convince myself that NN ′ makes sense).
Then with

Xi = an ith "exogenous" or predictor series

and
D∗ = some appropriate differencing operator

13



and a set of linear operators L,L1,L2, . . . ,Lk (that could, for example, be poly-
nomial backshift operators) I might model as

LD∗Y =

k∑
i=1

LiD∗Xi +N ε (8)

(The differencing of the response series D∗Y and the corresponding differencing
of the predictor series D∗Xi are typically done to remove trend and seasonality
from the raw series. There is usually no non-zero mean here because of the
differencing and the fact that including it would thereby imply explosive large
n behavior of the original Y .) If we write Y ∗ = D∗Y and X∗i = D∗Xi this
model can be written as

LY ∗ =

k∑
i=1

LiX∗i +N ε

and if L has an inverse perhaps this boils down to

Y ∗ =

k∑
i=1

L−1LiX∗i + L−1N ε (9)

Model (9) begins to look a lot like a regression model where a transformed re-
sponse is assumed to have a mean that is a linear form involving transformed in-
puts, and "errors" that have mean 0 and a covariance matrix σ2L−1NN ′

(
L−1

)′
(where L−1 is the matrix representing L−1). Now all of N ,L,L1,L2, . . . ,Lk
are typically hiding parameters (like the coeffi cients in backshift polynomials)
so the whole business of fitting a model like (9) by estimating those parameters
and then making corresponding forecasts/predictions is not so trivial. But at
least conceptually, this kind of form should now not seem all that surprising or
mysterious ... and all else is just detail ... ;+}.
The class of models that are of form (8) with N and L polynomial backshift

operators is the "ARIMAX" class (autoregressive integrated moving-average
exogenous variables models). The "I" refers to the fact that differencing has
been done and "integration"/summing is needed to get back to the original
response, and the "X" refers to the presence of the predictor series. The special
case without differencing or predictors

LY = N ε

is the famous ARIMA class, and we remark (as an issue to be revisited more
carefully soon) that provided L−1 exists, in this class we can hope that

Y = L−1N ε

and the model for Y might boil down to that of a time-invariant linear filter
applied to white noise.

14



2 Stationarity and Linear Processes

2.1 Basics of Stationary and Linear Processes

We begin in earnest to consider distributions/probability models for time series.
In any statistical modeling and inference, there must be some things that don’t
change across the data set, constituting structure that is to be discovered and
quantified. In time series modeling the notions of unchangeableness are given
precise meanings and called "stationarity."
A distribution for a time series Y is strictly stationary (Y is strictly

stationary) if BkY has the same distribution as Y for every integer k (positive
or negative, understanding that B−1 = F). This, of course, implies that for
every k and l ≥ 1 the vectors

(y1, . . . , yl) and (yk+1, . . . , yk+l)

have the same (joint) distributions. This is a strong mathematical condition
and more than is needed to support most standard time series analysis. Instead,
the next concept typically suffi ces.
Y is said to have a second order (or wide sense or weakly) stationary

distribution if every Ey2
t <∞ and

Eyt = µ (some constant not depending upon t)

and Cov(yt, yt+s) is independent of t, in which case we can write

γ (s) = Cov (yt, yt+s)

and call γ (s) the autocovariance function for the process. Note that
γ (0) =Varyt for all t, γ (−s) = γ (s), and that the ratio

ρ (s) ≡ γ (s)

γ (0)

provides the autocorrelation function for the process.
If ε is white noise and L is a time-invariant linear operator with

∑∞
t=−∞ |ψt| <

∞ then it’s a (not necessarily immediately obvious) fact that the output of

Lε

is well-defined with probability 1. (The probability with which any one of the
series defining the entries of Y = Lε fails to converge is 0. See the Brockwell
and Davis "Methods" book (henceforth BDM) page 51.) In fact, each Ey2

t <∞,
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the distribution of Y is second order stationary, and

γ (s) = Cov (yt, yt+s)

= Cov

( ∞∑
i=−∞

ψiεt−i,

∞∑
i=−∞

ψiεt+s−i

)

= Cov

 ∞∑
j=−∞

ψt−jεj ,

∞∑
j=−∞

ψt+s−jεj


= σ2

∞∑
j=−∞

ψt−jψs+t−j

= σ2
∞∑

i=−∞
ψiψi+s (10)

In particular

γ (0) = σ2
∞∑

i=−∞
ψ2
i

In this context, it is common to call Lε a linear process.
The class of linear process models is quite rich. Wold’s decomposition

(BDM pages 51 and 77+) says that every second order process is either a linear
process or differs from one only by a "deterministic" series. (See BDM for
the technical meaning of "deterministic" in this context.) Further, the fact
that a time invariant linear filter operating on white noise produces a second
order stationary process generalizes beyond white noise to wide sense stationary
processes. That is, Proposition 2.2.1 of BDM states the following.

Proposition 1 If Y is wide sense stationary with mean 0 and autocovariance
function γY and L is a time invariant linear filter with

∑∞
t=−∞ |ψt| <∞, then

LY
is well-defined with probability 1, Ey2

t < ∞ for each t, and LY is wide sense
stationary. Further, LY has autocovariance function

γLY (s) =

∞∑
j=−∞

∞∑
k=−∞

ψjψkγY (s+ (k − j))

(The form for the autocovariance is, of course, what follows from the infinite-
by-infinite matrix calculation of a covariance matrix via LΣL′.)

2.2 MA(q) and AR(1) Models

The moving average processes of order q (MA(q) processes) are very im-
portant elementary instances of linear processes. That is, for

Θ (B) = I +

q∑
j=1

θjBj
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and ε white noise,
Y = Θ (B) ε

is a MA(q) process. Alternative notation here is that

yt = εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q ∀t

and (with the convention that θ0 = 1) it is possible to argue that the autoco-
variance function for Y is

γ (s) =

{
σ2 (θs + θ1θs+1 + · · ·+ θq−sθq) if |s| ≤ q

0 otherwise
(11)

(Unsurprisingly, the covariances at lags bigger than q are 0.)
Consider next a model specified using the operator

Φ (B) = I − φB

for |φ| < 1. A model for Y satisfying

yt = φyt−1 + εt ∀t (12)

satisfies
Φ (B)Y = ε (13)

and might be called an autoregressive model of order 1 (an AR(1) model). Now
we have seen that where |φ| < 1

L =

∞∑
j=0

φjBj (14)

is a time-invariant linear operator with

ψj =

{
φj for j ≥ 0
0 otherwise

(and thus absolutely summable coeffi cients) that is an inverse for Φ (B). So in
this context,

Y = Lε
is a linear process that solves the equation (13) with probability 1. (BDM
argue that in fact it is the only stationary solution to the equation, so that its
properties are implied by the equation.) Such a Y has

yt =

∞∑
j=0

φjεt−j

and has autocovariance function

γ (s) = σ2
∞∑
j=0

φjφj+s = σ2 φ|s|

1− φ2
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and autocorrelation function
ρ (s) = φ|s| (15)

Next consider the version of the equation (12) where |φ| > 1 as a possible
device for specifying a second order stationary model for Y . The development
above falls apart in this case because I − φB has no inverse. But there is this.
Rewrite equation (12) as

yt−1 =
1

φ
yt −

1

φ
εt ∀t (16)

For F the forward shift operator, in operator notation relationship (16) is

Y =
1

φ
FY − 1

φ
Fε

or (
I − 1

φ
F
)
Y = − 1

φ
Fε (17)

Now
ε∗ ≡ − 1

φ
Fε

is white noise with variance σ2/φ2 and since
∣∣φ−1

∣∣ < 1 essentially the same
arguments applied above to identify an inverse for I −φB in |φ| < 1 cases show

that
(
I − 1

φF
)
has an inverse

L =

∞∑
j=0

φ−jF j

that is a time-invariant linear operator with

ψj =

{
φj for j ≤ 0
0 otherwise

(and thus absolutely summable coeffi cients). Thus in this context,

Y = Lε∗

is a linear process that solves the equation (17) with probability 1, and it is the
only stationary solution to the equation. Notice that

Lε∗ = − 1

φ

 ∞∑
j=0

φ−jF j
Fε

= −

 ∞∑
j=1

φ−jF j
 ε
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so that with probability 1

yt = −
∞∑
j=1

φ−jεt+j ∀t (18)

and Y has the representation of a linear filter with coeffi cients

ψj =

{
−φj for j ≤ −1

0 otherwise

applied to ε. This filter has less-than-intuitively-appealing property of failing
to be causal. So as a means of specifying a second order stationary time series
model, the equation (12) where |φ| > 1 leaves something to be desired.

As a way out of this unpleasantness, consider the autocovariance function
implied by expression (18). According to expression (10) this is

γ (s) =
σ2

φ2

(
1

φ

)|s|
1

1−
(

1

φ

)2

producing autocorrelation function

ρ (s) =

(
1

φ

)|s|
(19)

Comparing this expression (19) to the autocorrelation function for the |φ| < 1
version of an AR(1) model in display (15), we see that the parameters |φ| > 1
generate the same set of correlation structures as do the parameters |φ| < 1.
This is a problem of lack of identifiability. All we’ll really ever be able to
learn from data from a stationary model are a mean, a marginal variance, and
a correlation structure, and the |φ| > 1 and |φ| < 1 cases generate exactly
the same sets of 2nd order summaries. One set is therefore redundant, and
the common way out of this problem is to simply say that the |φ| < 1 set
is mathematically more pleasing and so we’ll take the AR(1) parameter space
to exclude values |φ| > 1. (Time series authors seem to like using language
like "We’ll restrict attention to models with |φ| < 1." I find that language
confusing. There is no exclusion of possible second order moment structures.
There is simply the realization that a given AR(1) structure comes from two
different φ’s if all real values of the parameter are allowed, and a decision is then
made to reduce the parameter set by picking the possibility that has the most
appealing mathematics.) BDM refer to the |φ| < 1 restriction of parameters
as the choice to consider only causal (linear) processes. This language is
(from my perspective) substantially better than the more common language
(probably traceable to Box and Jenkins) that terms the choice one of restriction
to "stationary" processes. After all, we’ve just argued clearly that there are
stationary solutions to basic AR(1) model equation even in the event that one
considers |φ| > 1.
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For completeness sake, it might perhaps be noted that if φ = ±1 there is no
stationary model for which equation (12) makes sense.
Motivated by consideration of restriction of the AR(1) parameter space, let

us briefly revisit the MA(1) model, and in particular consider the autocorrelation
function that follows from autocovariance (11). That is

ρ (s) =


1 if s = 0
θ1

1 + θ2
1

if |s| = 1

0 if |s| > 1

(20)

Notice now that the choices θ1 = c and θ1 = 1/c for a non-zero real number
c produce exactly the same autocorrelation function. That is, there is an
indentifiability issue for MA(1) models exactly analogous to that for the AR(1)
models. The set of MA(1) parameters θ with |θ| < 1 generates the same
set of correlation structures as does the set of MA(1) parameters θ with |θ| >
1. So if one wants an unambiguous representation of MA(1) autocorrelation
functions, some choice needs to be made. It is common to make the choice
to exclude MA(1) parameters θ with |θ| > 1. It seems common to then call
the MA(1) models with parameter |θ| < 1 invertible. I suppose that is most
fundamentally because the operator Θ (B) = I + θB used in the basic MA(1)
equation Y = Θ (B) ε is invertible (has an inverse) when |θ| < 1. Some authors
talk about the fact that when Θ (B) = I + θB is invertible, one then has an
"infinite series in the elements of Y " (or infinite regression) representation for
the elements of ε. While true, it’s not obvious to me why this latter fact is of
much interest.

2.3 ARMA(1,1) Models

A natural extension of both the MA(1) and AR(1) modeling ideas is the possi-
bility of using the (autoregressive moving average/ ARMA(1, 1)) equation

(I − φB)Y = (I + θB) ε (21)

for ε white noise to potentially specify a second order stationary model for time
series Y . In other symbols, this is

yt − φyt−1 = εt + θεt−1 ∀t

From what was just said about MA(1) models, it is clear that every auto-
covariance structure available for (I + θB) ε on the right of equation (21) using
|θ| > 1 is also available with a choice of |θ| < 1 and that in order to avoid lack
of identifiability one needs to restrict the parameter space for θ. It is thus
standard to agree to represent the possible covariance structures for (I + θB) ε
without using parameters |θ| > 1. Using the same language as was introduced
in the MA(1) context, we choose an "invertible" representation of ARMA(1, 1)
models.
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Next, as in the AR(1) discussion, when |φ| < 1 the operator L defined in
display (14) is an inverse for I − φB so that

Y = L (I − φB)Y = L (I + θB) ε

is stationary (applying Proposition 1 to the stationary (I + θB) ε) and solves
the ARMA(1, 1,) equation with probability 1. The operator on ε is

L (I + θB) =

 ∞∑
j=0

φjBj
 (I + θB)

=

∞∑
j=0

φjBj + θ

∞∑
j=0

φjBj+1

= I + (φ+ θ)

∞∑
j=1

φj−1Bj

so the ψj’s for this time-invariant linear filter are 0 for j < 0, ψ0 = 1, and
ψj = (φ+ θ)φj−1 for j > 1. The autocovariance function for L (I + θB) ε
implied by these is derived many places (including the original book of Box and
Jenkins) and has the form

γ (s) =


1 + θ2 + 2φθ

1− φ2 σ2 for s = 0

(1 + φθ) (φ+ θ)

1− φ2 σ2 for |s| = 1

φγ (|s| − 1) for |s| > 1

which in turn produces the autocorrelation function

ρ (s) =


1 for s = 0

(1 + φθ) (φ+ θ)

1 + θ2 + 2φθ
for |s| = 1

φ|s|−1ρ (1) for |s| > 1

We might suspect that possible representations of ARMA(1, 1) autocovari-
ance structures in terms of AR coeffi cient |φ| > 1 are redundant once one has
considered |φ| < 1 cases. The following is an argument to that effect. Using the
same logic as was applied in the AR(1) discussion, for |φ| > 1, since (I + θB) ε
is stationary, for the time invariant linear filter

L = −

 ∞∑
j=1

φ−jF j


the equation
(I − φB)Y = (I + θB) ε
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has a unique stationary solution solution that with probability 1 can be repre-
sented as

L (I + θB) ε

That is, in the case where |φ| < 1 the coeffi cients of the time-invariant linear
operator L applied to Z = (I + θB) ε to produce a stationary solution for the
ARMA(1, 1) equation are

ψj =

{
φj j ≥ 0
0 j < 0

and in the |φ| > 1 case they are

ψj =

{
0 j > −1

−φj j ≤ −1

Then applying the form for the autocovariance function of a linear filter ap-
plied to a stationary process given in Proposition 1, for the |φ| < 1 case, the
autocovariance function for L (I + θB) ε is

γ∗LZ (s) =

∞∑
j=0

∞∑
k=0

φjφkγZ (s+ (k − j)) =

∞∑
j=0

∞∑
k=0

φj+kγZ (s+ k − j)

For the |φ| > 1 case, the autocovariance function for L (I + θB) ε is

γ∗∗LZ (s) =
∑
j≤−1

∑
k≤−1

(
−φj

) (
−φk

)
γZ (s+ k − j)

=

∞∑
j=1

∞∑
k=1

(
1

φ

)j (
1

φ

)k
γZ (s+ j − k)

=

(
1

φ

)2 ∞∑
j=1

∞∑
k=1

(
1

φ

)j−1(
1

φ

)k−1

γZ (s+ (j − 1)− (k − 1))

=

(
1

φ

)2 ∞∑
j=0

∞∑
k=0

(
1

φ

)j+k
γZ (s+ k − j)

So, using φ = c with |c| < 1 in the first case and the corresponding φ = 1/c in
the second produces

γ∗∗LZ (s) = c2γ∗LZ (s)

The two autocovariance functions differ only by a constant multiplier and thus
produce the same autocorrelation functions. That is, considering ARMA(1, 1)
models with AR parameter |φ| > 1 only reproduces the set of correlation func-
tions available using |φ| < 1 (thereby introducing lack of identifiability into
the description of ARMA(1, 1) autocovariance functions). So it is completely
standard to restrict not only to parameters |θ| < 1 but also parameters |φ| < 1
making the representations of autocovariance functions both "invertible" AND
"causal."
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2.4 SampleMeans, Autocovariances, and Autocorrelations

We next consider what of interest and practical use can be said about natural
statistics computed from the realizable/observable vector

Y n =


y1

y2

...
yn


(a sub-vector of the conceptually infinite Y ) under a second order stationary
model. We begin with

ȳn =
1

n

n∑
t=1

yt

Clearly
Eȳn = µ

As it turns out,

Varȳn =
1

n2

n∑
s=1

n∑
t=1

Cov (yt, ys)

=
1

n2

n∑
t−s=−n

(n− |t− s|) γ (t− s)

=
1

n

n∑
s=−n

(
1− |s|

n

)
γ (s)

This latter implies that if γ (s) converges to 0 fast enough so that
∑n
s=−n |γ (s)|

converges (i.e.
∑∞
s=0 |γ (s)| <∞), then Varȳn → 0 and thus ȳn is a "consistent"

estimator of µ.
Further, for many second order stationary models (including Gaussian ones,

linear and ARMA processes) people can prove central limit results that say that
√
n (ȳn − µ)

is approximately normal for large n. This means that limits

ȳn ± z

√√√√∑n
s=−n

(
1− |s|n

)
γ (s)

n
(22)

can (in theory) serve as large sample confidence limits for µ. In applications
the sum under the root in display (22) will not be known and will need to be
estimated. To this end note that in cases where

∑∞
s=0 |γ (s)| <∞,

n∑
s=−n

(
1− |s|

n

)
γ (s)→

∑
γ (s)
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So if γ̂n (s) is some estimator of γ (s) based on Y n, a plausible replacement for∑n
s=−n

(
1− |s|n

)
γ (s) in limits (22) is

#∑
s=−#

γ̂n (s)

for # chosen so that one can be fairly sure that
∑#
s=−# γ (s) ≈

∑
γ (s) AND

γ̂n (s) is a fairly reliable estimator of γ (s) for |s| ≤ #. BDM recommends the
use of # =

√
n and thus realizable approximate limits for µ of the form

ȳn ± z

√∑√n
s=−

√
n
γ̂n (s)

n

Regarding sample/estimated covariances, it is standard to define

γ̂n (s) ≡ 1

n

n−|s|∑
t=1

(yt − ȳn)
(
yt+|s| − ȳn

)
(23)

There are only n−|s| products of the form (yt − ȳn)
(
yt+|s| − ȳn

)
and one might

thus expect to see an n − |s| divisor (or some even smaller divisor) in formula
(23). But using instead the n divisor is a way of ensuring that a corresponding
estimated covariance matrix is non-negative definite. That is, with definition
(23) for any 1 ≤ k ≤ n, the k × k matrix

Γ̂k =


γ̂n (0) γ̂n (1) · · · γ̂n (k − 1)
γ̂n (−1) γ̂n (0) · · · γ̂n (k − 2)

...
...

. . .
...

γ̂n (− (k − 1)) γ̂n (− (k − 2)) · · · γ̂n (0)


is nonnegative definite. In fact, if γ̂n (0) > 0 (the entries of Y n are not all the
same) then Γ̂k is non-singular and therefore positive definite.
The estimated/sample autocorrelation function ρ (s) derived from the values

(23) is

ρ̂n (s) ≡ γ̂n (s)

γ̂n (0)

Values of this are not very reliable unless n is reasonably large and s is small
relative to n. BDM offer the rule of thumb that ρ̂n (s) should be trusted only
when n ≥ 50 and |s| ≤ n/4.
Distributional properties of ρ̂n (s) form the basis for some kinds of inferences

for the autocorrelation function. For example, BDM page 61 says that for
large n and ρk the k-vector (ρ (1) , ρ (2) , . . . , ρ (k))

′, the corresponding vector of
sample correlations is approximately multivariate normal, that is

ρ̂n (1)
ρ̂n (2)
...

ρ̂n (k)

 ∼̇MVNk
(
ρk,

1

n
W

)
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for W a k × k matrix with (i, j) entry given by "the Bartlett formula"

wij =

∞∑
k=1

{ρ (k + i) + ρ (k − i)− 2ρ (i) ρ (k)} {ρ (k + j) + ρ (k − j)− 2ρ (i) ρ (j)}

Note that in particular, the Bartlett formula gives

wjj =

∞∑
k=1

(ρ (k + j) + ρ (k − j)− 2ρ (i) ρ (j))
2

and one can expect ρ̂n (s) to typically be within, say, 2
√
wss/

√
n of ρ (s).

This latter fact can be used as follows. If I have in mind a particular second
order stationary model and corresponding autocorrelation function ρ (s), values
ρ̂n (s) (for |s| not too big) outside approximate probability limits

ρ (s)± 2

√
wss√
n

suggest lack of fit of the model to a data set in hand. One particularly important
application of this is the case of white noise, for which ρ (0) = 1 and ρ (s) = 0
for s 6= 0. It’s easy enough to argue that in this case wss = 1 for s 6= 0. So a
plot of values ρ̂n (s) versus s with limits drawn on it at

±2
1√
n

is popular as a tool for identifying lags in a time series at which there are
detectably non-zero autocorrelations and evidence against the appropriateness
of a white noise model.
More generally, if I have in mind a particular pair of orders (p, q) for an

ARMA model, I thereby have in mind a functional form for ρ (s) depending
upon vector parameters φ and θ, say ρφ,θ (s) and therefore values wss also
depending upon φ and θ, say wss,φ,θ. If I estimate φ and θ from Y n as say
φ̂n and θ̂n, then I expect ρ̂n (s) to typically be inside limits

ρφ̂n,θ̂n
(s)± 2

√
wss,φ̂n,θ̂n√

n
(24)

When this fails to happen for small to moderate |s| there is evidence of lack of
fit of an ARMA(p, q) model. (This is a version of what is being portrayed on
BDM page 63, though for reasons I don’t quite understand, the authors draw
limits around ρ̂n (s) and look for ρφ̂n,θ̂n (s) values outside those limits rather
than vice versa.) Limits (24) are some kind of very approximate prediction
limits for ρ̂n (s) ... if one had φ and θ and used them above, the limits would
already be approximate prediction limits because of the reliance upon the large
sample normal approximation for the distribution of ρ̂n (s).
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2.5 Prediction and Gaussian Conditional Distributions

Time series models are usually fit for purposes of making predictions of future
values of the series. The mathematical formulation of this enterprise is typically
"best linear prediction." To introduce this methodology, consider the following
(at this point, abstractly stated) problem. For V

k×1
and u

1×1
random vectors

with

E
(
V
u

)
=

 µ1
k×1

µ2
1×1

 and Cov
(
V
u

)
=

 Σ11
k×k

Σ12
k×1

Σ21
1×k

Σ22
1×1


what linear form c+ l′V minimizes

E
(
u−

(
c+ l′V

))2
(25)

over choices of c ∈ < and l ∈ <k?
It turns out that this linear prediction question is related to another ques-

tion whose answer involves basics of probability theory, including conditional
means and multivariate normal distributions. That is this. If one adds to the
above mean and covariance assumptions the assumption of (k+ 1)-dimensional
normality, what function of V , say g (V ), minimizes

E (u− g (V ))
2 (26)

over choices of g (·), linear or non-linear? Basic probability facts about con-
ditional distributions and conditional means say that (in general) the optimal
g (V ) is

E [u|V ]

Multivariate normal facts then imply that for Gaussian models

E [u|V ] = µ2 + Σ21Σ
−1
11 (V − µ1) (27)

Now this normal conditional mean (27) is in fact a linear form c + l′V (with
c = µ2 −Σ21Σ

−1
11 µ1 and l

′ = Σ21Σ
−1
11 ). So since it optimizes the more general

criterion (26) it also optimizes the original criterion (25) for normal models.
But the original criterion takes the same value for all second order stationary
models with a given moment structure, regardless of whether or not a model is
Gaussian. That means that the form (27) is the solution to the original linear
prediction problem in general.
Note also that for the multivariate normal model,

Var [u|V ] = Σ22 −Σ21Σ
−1
11 Σ12 (28)

(an expression that we note does not depend upon the value of V ). What is
also interesting about the form of the normal conditional variance (28) is that
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it gives the optimal value of prediction mean square error (26). To see this,
note that in general

E (u− E [u|V ])
2

= E ((u− Eu)− (E [u|V ]− Eu))
2

= E (u− Eu)
2

+Var E [u|V ]− 2E ((u− Eu) (E [u|V ]− Eu))

= Varu+Var E [u|V ]− 2E (E [(u− Eu) (E [u|V ]− Eu) |V ])

= Varu−Var E [u|V ]

Then in normal cases, E(u− E [u|V ])
2 on the left above is the minimum value of

criterion (25), and since E[u|V ] has form (27) basic probability facts for linear
combinations of random variables imply that

Var E [u|V ] = Σ21Σ
−1
11 Cov (V − µ1)

(
Σ21Σ

−1
11

)′
= Σ21Σ

−1
11 Σ11Σ

−1
11 Σ12

= Σ21Σ
−1
11 Σ12

So indeed, the minimum value of criterion (25) in normal cases is

Varu−Σ21Σ
−1
11 Σ12 = Σ22 −Σ21Σ

−1
11 Σ12 (29)

the normal conditional variance (28). Since this is true for normal cases and
the value of criterion (25) is the same for every model with the given mean and
covariance structure, Σ22−Σ21Σ

−1
11 Σ12 is then the minimum value of criterion

(25) for any model with this mean and covariance structure.
All of the above generality can be applied to various prediction questions

for weakly stationary time series, with V some finite part of Y and u some
coordinate of Y not in V . (We’ll actually have reason in a bit to consider u of
dimension larger than 1, but for the time being stick with scalar u.)
Consider first the prediction of yn+s based on Y n. The vector(

Y n

yn+s

)
has

E
(
Y n

yn+s

)
= µ 1

(n+1)×1

and

Cov
(
Y n

yn+s

)
=



γ (0) γ (1) γ (2) · · · γ (n− 1) γ (n+ s− 1)
γ (1) γ (0) γ (1) · · · γ (n− 2) γ (n+ s− 2)
γ (2) γ (1) γ (0) · · · γ (n− 3) γ (n+ s− 3)
...

...
...

. . .
...

...
γ (n− 1) γ (n− 2) γ (n− 3) · · · γ (0) γ (s)

γ (n+ s− 1) γ (n+ s− 2) γ (n+ s− 3) · · · γ (s) γ (0)


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from whence we may define

Σ11
n×n

=


γ (0) γ (1) γ (2) · · · γ (n− 1)
γ (1) γ (0) γ (1) · · · γ (n− 2)
γ (2) γ (1) γ (0) · · · γ (n− 3)
...

...
...

. . .
...

γ (n− 1) γ (n− 2) γ (n− 3) · · · γ (0)

 ,

Σ12
n×1

=


γ (n+ s− 1)
γ (n+ s− 2)
γ (n+ s− 3)

...
γ (s)

 ,Σ21 = Σ′12 and Σ22 = γ (0)

Then (using BDM notation) with

Pnyn+s = the best linear predictor of yn+s from Y n

it is the case that
Pnyn+s = µ+ Σ21Σ

−1
11 (Y n − µ1) (30)

In some sense, application of this development to various specific second order
stationary models (each with a different autocovariance function γ (s)) is then
"just" a matter of details. Pnyn+s may have special nice forms for some models,
and others may present really nasty computational problems in order to actually
compute Pnyn+s, but that is all in the realm of the specialist. For users, what
is important is the big picture that says this is all just use of a multivariate
normal form.
At this point it is probably important to stop and say that in applications,

best linear prediction (depending as it does on the mean and covariance structure
that can only be learned from data) is not realizable. That is, in order to use
form (30) one must know µ and γ (s). In practice, the best one will be able
to muster are estimates of these. But if, for example, one fits an ARMA(p, q)
model, producing estimates of (possibly a non-zero mean µ and) parameters
φ,θ and σ, these can be plugged into an ARMA(p, q) form for γ (s) to produce
estimated Σ21Σ

−1
11 and then an approximate Pnyn+s, say P̂nyn+s. (This, by

the way, is very parallel to the story about "BLUPs" told in a course like Stat
511. One cannot actually use the optimal c and l′, but can at least hope to
estimate them without too much loss, and produce good "approximate BLUPs"
P̂nyn+s.)
Note also that IF one did have available the actual autocovariance function,

under multivariate normality, the limits

Pnyn+s ± z
√

Σ22 −Σ21Σ
−1
11 Σ12

would function as (theoretically exact) prediction limits for yn+s. Having to
estimate model parameters of some autocovariance function (and perhaps a
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mean) to produce realizable limits

P̂nyn+s ± z
√

̂(
Σ22 −Σ21Σ

−1
11 Σ12

)
makes these surely approximate and potentially substantially optimistic, since
this form fails to take account of the "extra" uncertainty in the prediction
associated with the fact that the parameter estimates are imperfect/noisy.
BDM Section 2.5 has a number of results concerning "the prediction opera-

tor" Pn (·) that might be used to prove things about prediction and find tricks
that can simplify computations in special models. It seems to me that instead of
concerning oneself with those results in and of themselves, it makes more sense
to simply make use of the "conditional mean operator" E[·|Y n] for a Gaussian
version of a second order stationary model, and then note that whatever is true
involving it is equally true concerning Pn (·) in general. Some applications of
this way of operating follow.
Consider, for example, an AR(1) model with mean 0 and prediction in that

model. That is, consider a models specified by

yt = φyt−1 + εt

for ε white noise and |φ| < 1. If the εt are jointly Gaussian, εt is independent
of (. . . , εt−3, εt−2, εt−1) and yt−1 is a function of this infinite set of variables.
Consider then

Pnyn+1

the one-step-ahead forecast. For a Gaussian model

Pnyn+1 = E [yn+1|Y n]

= E [φyn + εn+1|Y n]

= φE [yn|Y n] + E [εn+1|Y n]

= φyn + 0

= φyn

(because of the linearity of conditional expectation, the fact that yn is a function
of Y n, and εn+1 has mean 0 and is independent of (. . . , εn−3, εn−2, εn−1, εn) and
therefore Y n). Pnyn+1 = φyn being the case for Gaussian AR(1) models means
it’s true for all AR(1) models.
More generally, it is the case that for AR(1) models with mean 0 and |φ| < 1,

Pnyn+s = φsyn (31)

and the corresponding prediction variance (29) is the Gaussian Var[yn+s|Y n]

σ2 1− φ2s

1− φ2
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That the AR(1) s-step-ahead predictor is as in display (31) follows as for the
s = 1 case after using the recursion to write

yn+s = φsyn + φs−1εn+1 + φs−2εn+2 + · · ·+ φεn+s−1 + εn+s

It is also worth considering the relationship of prediction for a mean 0 process
to that of a mean µ (possibly non-zero) process. If Y is second order stationary
with mean vector µ1, then

Y ∗ = Y − µ1

is a mean 0 process with the same autocovariance function as Y . Then for a
Gaussian version of these models

Pnyn+s = Pn
(
y∗n+s + µ

)
= E

[
y∗n+s + µ|Y n

]
= E

[
y∗n+s|Y n

]
+ µ

= E
[
y∗n+s|Y n − µ1

]
+ µ

= E
[
y∗n+s|Y ∗n

]
+ µ

= µ+ P ∗ny
∗
n+s

(the fourth equality following because conditioning on the value of Y n is no
different from conditioning on the value of Y n−µ1, knowing the value of one is
exactly equivalent to knowing the value of the other). The notation P ∗ny

∗
n+s is

meant to indicate the prediction operator for the mean 0 version of the process
based on Y ∗n applied to y

∗
n+s. Since the first element in the string of equalities

is the same as the last for Gaussian processes, it is the same for all second order
processes. So knowing how to predict a mean 0 process, one operates on values
for the original series with µ subtracted to predict a (µ-subtracted) future value
and then adds µ back in. For example, for an AR(1) process with mean µ, the
s-step-ahead forecast for yn+s based on Y n is

µ+ φsy∗n = µ+ φs (yn − µ)

In light of the simple relationship between forecasts for mean 0 processes and
for mean µ processes (and the fact that much of time series analysis is about
forecasting) it is standard to assume that the mean is 0 unless explicitly stated
to the contrary, and we’ll adopt that convention for the time being.

2.6 Partial Autocorrelations

One additional practically important concept naturally related to the use of
Gaussian assumptions to generate general formulas for second order stationary
time series models is that of partial autocorrelation. It derives most natu-
rally from the multivariate normal conditioning formulas, not for a univariate
quantity, but for a bivariate quantity. Consider a Gaussian stationary process
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and the finite vector 
y0

y1

...
ys


The multivariate normal conditioning formulas tell how to describe the condi-
tional distribution (

y0

ys

)
given


y1

y2

...
ys−1


Rearranging slightly for convenience, the vector

y1

...
ys−1

ys
y0


has mean 0 and covariance matrix

Σ =



γ (0) γ (1) · · · γ (s− 3) γ (s− 2) γ (s− 1) γ (1)
γ (1) γ (0) · · · γ (s− 4) γ (s− 3) γ (s− 2) γ (2)
...

...
. . .

...
...

...
...

γ (s− 3) γ (s− 4) · · · γ (0) γ (1) γ (2) γ (s− 2)
γ (s− 2) γ (s− 3) · · · γ (1) γ (0) γ (1) γ (s− 1)
γ (s− 1) γ (s− 2) · · · γ (2) γ (1) γ (0) γ (s)
γ (1) γ (2) · · · γ (s− 2) γ (s− 1) γ (s) γ (0)


which we partition as

Σ =

 Σ11
(s−1)×(s−1)

Σ12
(s−1)×2

Σ21
2×(s−1)

Σ22
2×2


for

Σ11 =


γ (0) γ (1) · · · γ (s− 3) γ (s− 2)
γ (1) γ (0) · · · γ (s− 4) γ (s− 3)
...

...
. . .

...
...

γ (s− 3) γ (s− 4) · · · γ (0) γ (1)
γ (s− 2) γ (s− 3) · · · γ (1) γ (0)

 ,Σ22 =

(
γ (0) γ (s)
γ (s) γ (0)

)
,

Σ21 =

(
γ (s− 1) γ (s− 2) · · · γ (2) γ (1)
γ (1) γ (2) · · · γ (s− 2) γ (s− 1)

)
, and Σ12 = Σ′21
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Then, the conditional covariance matrix for (y0, ys)
′ is (in the same basic form

as used repeatedly above, but now a 2× 2 matrix)

Σ22 −Σ21Σ
−1
11 Σ12

This prescribes a conditional covariance between y0 and ys given the intervening
observations, and then a conditional correlation between them. We’ll use the
notation (following BDM)

α (s) = the Gaussian conditional correlation between

y0 and ys given y1, y2, . . . , ys−1

and call α (s) the partial autocorrelation function for the model. Notice
that by virtue of the fact that normal conditional covariance matrices do not
depend upon the values of conditioning variables, α (s) is truly a function only
of the lag, s, involved and the form of the autocovariance function γ (s).
It remains to provide some motivation/meaning for α (s) outside of the

Gaussian context. BDM provide several kinds of help in that direction, one
computational and others that are more conceptual. In the first place, they
point out that for any second order stationary process, with

Γs =


γ (0) γ (1) · · · γ (s− 1)
γ (−1) γ (0) · · · γ (s− 2)
...

...
. . .

...
γ (− (s− 1)) γ (− (s− 2)) · · · γ (0)

 and γs =


γ (1)
γ (2)
...

γ (s)


α (s) = the sth entry of Γ−1

s γs (32)

Further, it is the case that in general

1. α (s) is the correlation between the (linear) prediction errors ys − Ps−1ys
and y0−Ps−1y0 (for Ps−1 the linear prediction operator based on Y s−1),

2. for Psy0 = c +
∑s
t=1 ltyt the best linear predictor of y0 based on Y s,

α (s) = ls, and

3. for vn the optimal 1-step-ahead prediction variance based on Y n, vn =
E(yn+1 − Pnyn+1)

2 it is the case that

vn = vn−1

(
1− α (n)

2
)

(so that the larger is |α (n)| the greater is the reduction in prediction
variance associated with an increase of 1 in the length of the data record
available for use in prediction).

A primary use of an estimated partial autocorrelation function (derived, for
example from estimated versions of relationship (32)) is in model identification.
For example, an AR(p) model has α (s) = 0 for s > p. So a sample partial
autocorrelation function that is very small at lags larger than p suggests the
possibility that an AR(p) might fit a data set in hand.
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3 General ARMA(p, q) Models

3.1 ARMA Models and Some of Their Properties

It’s fairly clear how one proceeds to generalize the AR(1),MA(q), and ARMA(1, 1)
models of the previous section. For backshift polynomial operators

Φ (B) = I − φ1B − φ2B2 − · · · − φpBp

and
Θ (B) = I + θ1B + θ2B2 + · · ·+ θqBq

and white noise process ε, we consider the possibility of a time series Y satisfying
the ARMA(p, q) equation

Φ (B)Y = Θ (B) ε (33)

Of course, in notation not involving operators, this is

yt−φ1yt−1−φ2yt−2−· · ·−φpyt−p = εt+θ1εt−1 +θ2εt−2 + · · ·+θqεt−q ∀t (34)

In order to represent a Y solving equation (33) as a causal time-invariant
linear process, one wants the operator Φ (B) to be invertible. As it turns out, a
standard argument (provided most clearly on page 85 of BDT) says that Φ (B)
has an inverse provided the polynomial

φ (z) ≡ 1− φ1z − φ2z
2 − · · · − φpzp

treated as a map from the complex numbers to the complex numbers has no
roots inside the unit circle (i.e. if |z| < 1 then φ (z) 6= 0). In that event, there
is a causal time invariant linear operator L for which

Y = LΘ (B) ε

and it turns out that provided the polynomial

θ (z) ≡ 1 + θ1z + θ2z
2 + · · ·+ θpz

p

and φ (z) have no roots in common, the coeffi cients ψs of

LΘ (B) =

∞∑
s=0

ψsBs

are such that
∞∑
s=0

ψsz
s =

θ (z)

φ (z)
∀ |z| < 1

(This is no computational prescription for the coeffi cients, but does suggest that
they are probably computable.)
It should further be plausible that to the extent that "invertibility" (the

ability to write ε in terms of a causal linear filter applied to Y ) of the process
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is of interest, one wants the operator Θ (B) to have an inverse. Applying the
same technical development that guarantees the invertibility of Φ (B) (see page
87 of BDT) one has that Θ (B) has an inverse provided the polynomial θ (z)
has no roots inside the unit circle (i.e. if |z| < 1 then θ (z) 6= 0). In that event,
there is a causal time-invariant linear operatorM for which

ε =MΦ (B)Y

and provided the polynomial θ (z)and φ (z) have no roots in common, the coef-
ficients πs of

MΦ (B) =

∞∑
s=0

πsBs

are such that
∞∑
s=0

πsz
s =

φ (z)

θ (z)
∀ |z| < 1

Given the above development, it is not surprising that in order to avoid iden-
tifiability problems when estimating the parameters of ARMA models people
commonly restrict attention to coeffi cient sets for which neither φ (z) nor θ (z)
have roots inside the unit circle and the polynomials have no common factors,
so the corresponding stationary solutions to the ARMA(p, q) equation (33) are
both causal and invertible.
Computation of the coeffi cients ψs for LΘ (B) =

∑∞
s=0 ψsBs can proceed

recursively by equating coeffi cients in the power series identity

φ (z)

∞∑
s=0

ψsz
s = θ (z)

i.e.(
1− φ1z − φ2z

2 − · · · − φpzp
) (
ψ0 + ψ1z

1 + ψ2z
2 + · · ·

)
= 1+θ1z+θ2z

2+· · ·+θpzp

That is, clearly

ψ0 = 1

ψ1 = θ1 + ψ0φ1

ψ2 = θ2 + ψ1φ1 + ψ0φ2

and in general

ψj = θj +

p∑
k=1

φkψj−k for j = 0, 1, . . . (35)

where θ0 = 1, θj = 0 for j > q and ψj = 0 for j < 0
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Of course, where one has use for the impulse response function for MΦ (B) =∑∞
s=0 πsBs, similar reasoning produces a recursion

πj = −φj −
q∑

k=1

θkπj−k for j = 0, 1, . . . (36)

where φ0 = −1, φj = 0 for j > p and πj = 0 for j < 0

One reason for possibly wanting the weights πj in practice is this. An
ARMA process satisfying not the equation (33), but rather

Θ (B)Y = Φ (B) ε

is obviously related to the original ARMA(p, q) in some way. As it turns out, a
common model identification tool is the autocorrelation function of this "dual
process," sometimes called the inverse autocorrelation function. Since the
MA(q) autocorrelations for lags larger than q are 0, it follows that an AR(p)
process has an inverse autocorrelation function that is 0 beyond lag p. So
looking at an inverse autocorrelation function is an alternative to considering
the partial autocorrelation function to identify an AR process and its order.

3.2 Computing ARMA(p, q) Autocovariance Functions and
(Best Linear) Predictors

Once one has coeffi cients ψt for representing Y = LΘ (B) ε as a linear process,
expression (10) immediately provides a form for the autocovariance function,
namely

γ (s) = σ2
∞∑

t=−∞
ψtψt+s

This form is not completely happy, involving as it does an infinite series and all
the coeffi cients ψt. But there is another insight that allows effi cient computation
of the autocovariance function.
If one multiplies the basic ARMA equation (34) through by yt−k and takes

expectations, the relationship

γ (k)− φ1γ (k − 1)− φ2γ (k − 2)− · · · − φpγ (k − p)

= E

[( ∞∑
s=0

ψsεt−k−s

)
(εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q)

]

is produced. The right hand side of this equation is (since ε is white noise)

σ2
(
ψ0 + θ1ψ1 + · · ·+ θqψq

)
for k = 0

σ2
(
θ1ψ0 + θ2ψ1 + · · ·+ θqψq−1

)
for k = 1

σ2
(
θ2ψ0 + θ3ψ1 + · · ·+ θqψq−2

)
for k = 2

...
...
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This suggests that the first p+1 of these equations (the ones for k = 0, 1, . . . , p)
may be solved simultaneously for γ (0) , γ (1) , . . . , γ (p) and then one may solve
recursively for

γ (p+ 1) using the k = p+ 1 equation
γ (p+ 2) using the k = p+ 2 equation

...
...

This method of computing, doesn’t require approximating an infinite sum and
requires computation of only ψ0, ψ1, . . . , ψq from the parameters φ,θ, and σ2.
In theory, prediction for the ARMA(p, q) process can follow the basic "mean

of the conditional normal distribution" path laid down in Section 2.5. But
as a practical matter, direct use of that development requires inversion of the
n× n matrix Σ11 in order to compute predictions, and that would seem to get
out of hand for large n. A way out of this matter is through the use of the
so-called innovations (one-step-ahead prediction errors) algorithm. This is
first discussed in general terms in Section 2.5.2 of BDM. Before here considering
its specialization to ARMA models, we consider a theoretical development that
points in the direction of the algorithm.
Temporarily consider a causal invertible Gaussian ARMA(p, q) model and

write

yt =

∞∑
s=0

ψsεt−s and εt =

∞∑
s=0

πsyt−s

so that in theory, knowing the infinite sequence of observations through time
n (namely . . . y−1, y0, . . . , yn) is equivalent to knowing the infinite sequence of
errors through time n (namely . . . ε−1, ε0, . . . , εn). In light of the representation
(34), a theoretical (non-realizable) predictor of yn+1 is

E [yn+1| . . . y−1, y0, . . . , yn] = φ1yn + φ2yn−1 + · · ·+ φpyn+1−p

+0 + θ1εn + θ2εn−1 + · · ·+ θqεn+1−q

(this is not realizable because one doesn’t ever have an infinite record . . . y−1, y0,
. . . , yn available and can’t recover the ε’s). In deriving this theoretical predictor,
one uses the equivalence of the y and ε informations and the fact that for the
Gaussian case, εn+1 is independent of the conditioning sequence and has mean
0. It is plausible that Pnyn+1 might have a form somewhat like this theoretical
one and the innovations algorithm shows this is the case.
With

ŷ1 ≡ 0

ŷn = Pn−1yn for n = 2, 3, . . .

vn = E (yn+1 − ŷn+1)
2 for n = 0, 1, 2, . . .
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the ARMA specialization of the innovations algorithm shows that

ŷn+1 =


∑n
j=1 θnj (yn+1−j − ŷn+1−j) 1 ≤ n < max (p, q)

φ1yn + φ2yn−1 + · · ·+ φpyn+1−p
+
∑q
j=1 θnj (yn+1−j − ŷn+1−j)

n ≥ max (p, q)

and
vn = σ2rn

where the θnj’s and the rn’s can be computed recursively using the parameters
φ,θ, and σ2 (and autocovariance function γ (s) derived from them, but not
involving the observed Y n) and these equations allow recursive computation of
ŷ2, ŷ3, . . .. (See BDM pages 100-102 for details.) Note too that if n > max (p, q)
the one-step-ahead forecasts from Y n, have a form much like the theoretical
predictor E[yn+1| . . . y−1, y0, . . . , yn], where θnj’s replace θj’s and innovations
replace ε’s.
Further, once one-step-ahead predictions are computed, they can be used to

produce s-step-ahead predictions. That is, in the ARMA(p, q) model

Pnyn+s =


∑n+s−1
j=s θn+s−1,j (yn+s−j − ŷn+s−j) 1 ≤ s ≤ max (p, q)− n∑p

j=1 φjPnyn+s−j

+
∑n+s−1
j=s θn+s−1,j (yn+s−j − ŷn+s−j)

s > max (p, q)− n

and once ŷ2, ŷ3, . . . , ŷn have been computed, for fixed n it’s possible to compute
Pnyn+1, Pnyn+2, . . .. BDM pages 105-106 also provide prediction variances

vn (s) ≡ E (yn+s − Pnyn+s)
2

=

s−1∑
j=0

(
j∑
r=0

urθn+s−r−1,j−r

)2

vn+s−j−1

where the coeffi cients uj can be computed recursively from

uj =

min(p,j)∑
k=1

φkuj−k j = 1, 2, . . .

and (under Gaussian assumptions) prediction limits for yn+s are

Pnyn+s ± z
√
vn (s)

Of course, where parameters estimates φ̂, θ̂, and σ̂2 replace φ,θ, and σ2, the
limits

P̂nyn+s ± z
√
v̂n (s)

are then approximate prediction limits.
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3.3 Fitting ARMA(p, q) Models (Estimating Model Para-
meters)

We now consider basic estimation of the ARMA(p, q) parameters φ,θ, and σ2

from Y n. The most natural place to start looking for a method of estimation
is with maximum likelihood based on a Gaussian version of the model. That
is, for γφ,θ,σ2 (s) the autocovariance function corresponding to parameters φ,θ,
and σ2 and the n× n covariance matrix

Σφ,θ,σ2 =
(
γφ,θ,σ2 (|i− j|)

)
i=1,...,n
j=1,...,n

the Gaussian density for Y n has the form

f
(
yn|φ,θ, σ2

)
= (2π)

−n/2 ∣∣det Σφ,θ,σ2
∣∣−n/2 exp

(
−1

2
y′nΣ−1

φ,θ,σ2yn

)
Maximizers φ̂, θ̂, and σ̂2 of f

(
yn|φ,θ, σ2

)
aremaximum likelihood estimates

of the parameters. Standard statistical theory then implies that forH
(
φ,θ, σ2

)
the (p+ q + 1)× (p+ q + 1) Hessian matrix (the matrix of second partials) for
ln f

(
yn|φ,θ, σ2

)
,

−H−1
(
φ̂, θ̂, σ̂2

)
functions as an estimated covariance matrix for the maximum likelihood esti-
mators, and an estimate φ̂ or θ̂ or σ̂2 plus or minus z times the root of the

corresponding diagonal entry of −H−1
(
φ̂, θ̂, σ̂2

)
provides approximate confi-

dence limits for the corresponding parameter.
Direct use of the program just outlined would seem to be limited by the

necessity of inverting the n×nmatrixΣφ,θ,σ2 in order to compute the likelihood.
What is then helpful is the alternative representation

f
(
yn|φ,θ, σ2

)
=

1√
(2π)

n
n−1∏
j=0

vj

exp

−1

2

n∑
j=1

(yj − ŷj)2
/vj−1



where the one-step-ahead forecasts ŷj and prediction variances vj are functions
of the parameters and can be computed as indicated in the previous section.
This form enables the proof that with

S (φ,θ) =

n∑
j=1

(yj − ŷj)2
/rj−1

it is the case that
σ̂2 =

1

n
S
(
φ̂, θ̂

)
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where
(
φ̂, θ̂

)
optimizes

l (φ,θ) = ln

(
1

n
S (φ,θ)

)
+

1

n

n∑
j=1

ln rj−1

Further, for H1 (φ,θ) the Hessian matrix for l (φ,θ), an estimated covariance

matrix for
(
φ̂, θ̂

)
is

2H−1
1

(
φ̂, θ̂

)
A standard alternative to use of the Gaussian likelihood is least squares

estimation. In the present situation this is minimization of

S (φ,θ) or S̃ (φ,θ) ≡
n∑
j=1

(yj − ŷj)2

to produce estimates
(
φ̃, θ̃

)
and then use of the estimate

σ̃2 =
1

n− p− qS
(
φ̃, θ̃

)
or

1

n
S̃
(
φ̃, θ̃

)
The first of these is suggested in BDM and might be termed a kind of "weighted
least squares" and the second in Madsen and might be termed "ordinary least

squares." With H2 (φ,θ) the Hessian of S̃
(
φ̃, θ̃

)
, Madsen says that an esti-

mated covariance matrix for
(
φ̃, θ̃

)
is

2σ̃H−1
2

(
φ̃, θ̃

)
that provides standard errors and then approximate confidence limits for ele-
ments of (φ,θ).
A computationally simpler variant of least squares is the conditional least

squares of Abraham and Ledolter. This is based on the relationship

εt = yt − φ1yt−1 − φ2yt−2 − · · · − φpyt−p
−θ1εt−1 − θ2εt−2 − · · · − θqεt−q ∀t

obtained by rearranging the basic ARMA relationship (34) (and no doubt mo-
tivated by the form of the theoretical predictor E[yn+1| . . . y−1, y0, . . . , yn]). IF
one knew some consecutive string of q values of ε’s, by observing y’s one would
know all subsequent ε’s as well. Thinking that ε’s have mean 0 and in any
case, many periods after a "start-up" string of q values ε, the exact values in
the start-up string are probably largely immaterial, one might set

ε̃p = ε̃p−1 = · · · = ε̃p−q+1 = 0
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and then compute subsequent approximate ε values using

ε̃t = yt − φ1yt−1 − φ2yt−2 − · · · − φpyt−p
−θ1ε̃t−1 − θ2ε̃t−2 − · · · − θq ε̃t−q ∀t > p

The "conditional least squares" criterion is then

SC (φ,θ) =

n∑
t=p+1

ε̃t
2

and minimizers of this criterion
(
φ̃C , θ̃C

)
are conditional least squares esti-

mates. For what it is worth, this seems to be the default ARMA fitting method
in SAS FSTM . I suspect (but am not actually sure) that for

σ̃2
C =

1

n− pSC (φ,θ)

and HC (φ,θ) the Hessian matrix for SC (φ,θ), the matrix

2σ̃CH
−1
C

(
φ̃C , θ̃C

)
can be used as an estimated covariance matrix for

(
φ̃C , θ̃C

)
.

3.4 Model Checking/Diagnosis Tools for ARMA Models

As in any other version of statistical analysis, it is standard after fitting a time
series model to look critically at the quality of that fit, essentially asking "Is
the fitted model plausible as a description of what we’ve seen in the data?"
The methodology for doing this examination is based on residuals (in perfect
analogy with what is done in ordinary regression analysis). That is, for a fixed
set of ARMA parameters φ,θ, and σ2 the innovations algorithm produces one-
step-ahead prediction errors (innovations) ( that actually depend only upon φ
and θ and not on σ2)

eφ,θt = yt+1 − ŷφ,θt+1 = yt+1 − Pφ,θt yt+1

and corresponding variances (that additionally depend upon σ2)

E
(
yt+1 − Pφ,θt yt+1

)2

= vφ,θ,σ
2

t = σ2rφ,θt

Under the ARMA model (with parameters φ,θ, and σ2), standardized versions
of the prediction errors,

wφ,θ,σ
2

t =
eφ,θt

σ

√
rφ,θt

,
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constitute a white noise sequence with variance 1. So after fitting an ARMA
model, one might expect standardized residuals

ê∗t ≡ w
φ̂,θ̂,σ̂2

t =
eφ̂,θ̂t

σ̂

√
rφ̂,θ̂t

to be approximately a white noise sequence with variance 1. Tools for examining
a time series looking for departures from white noise behavior are then applied
to the ê∗t as a way of examining the appropriateness of the ARMA model.
For one thing, if the ARMAmodel is appropriate, the sample autocorrelation

function for ê∗0, ê
∗
1, ê
∗
2, . . . , ê

∗
n−1 ought to be approximately 0 at all lags s bigger

than 0. It is thus standard to plot the sample autocorrelation function for the
ê∗t’s (say ρ̂

ê∗

n (s)) with limits

±2
1√
n

drawn on the plot, interpreting standardized residuals outside these limits as
suggesting dependence at the corresponding lag not adequately accounted for
in the modeling.
A related insight is that the expectation that the sample correlations ρ̂ê

∗

n (1) ,

ρ̂ê
∗

n (2) , . . . , ρ̂ê
∗

n (h) are approximately iid normal with mean 0 and standard
deviation 1/

√
n translates to an expectation that

Qh ≡
h∑
s=1

(√
nρ̂ê

∗

n (s)
)2 .∼ χ2

h

So approximate p-values derived as χ2
h right tail probabilities beyond observed

values of Qh might serve as indicators of autocorrelation at a lag of s ≤ h not
adequately accounted for in modeling. A slight variant of this idea is based on
the Ljung-Box statistic

QLBh ≡ n (n+ 2)

h∑
s=1

(
ρ̂ê

∗

n (s)
)2

n− s

for which the χ2
h approximation is thought to be better than for Qh when there

is no real departure from white noise. In either case, standard time series
software typically produces approximate p-values for some range of values of

h ≥ 1. SAS FS
TM

terms plots of the QLBh p-values versus h (on a log scale for
probability) "white noise test" plots.
Section 1.6 of BDM has a number of other test statistics that can be ap-

plied to the series of standardized residuals êt in an effort to identify any clear
departures from a white noise model for the standardized innovations.
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4 Some Extensions of the ARMA Class of Mod-
els

The ARMA models comprise a set of basic building blocks of time series mod-
eling. Their usefulness can be extended substantially by a variety of devices.
We consider some of these next.

4.1 ARIMA(p, d, q) Models

It is frequently possible to remove some kinds of obvious trends from time series
through (various kinds of) differencing, thereby producing differenced series that
can then potentially be modeled as stationary. To begin, we will thus say that
a series Y can be described by an ARIMA(p, d, q) (autoregressive integrated
moving average model of orders p, d, and q) model if the series Z = DdY is an
ARMA(p, q) series, i.e. if Y satisfies

Φ (B)DdY = Θ (B) ε

for ε white noise and invertible backshift polynomial operators

Φ (B) = I − φ1B − φ2B2 − · · · − φpBp

and
Θ (B) = I + θ1B + θ2B2 + · · ·+ θqBq

with corresponding polynomials φ (z) and θ (z) having no common roots. (The
word "integrated" derives from the fact that as values of Z = DdY are derived
from values of Y through differencing, values of Y are recovered from values of
Z through summing or "integrating.")
Obviously enough, fitting and inference for the ARMA parameters φ,θ, and

σ2 based on the Z series proceeds essentially as in Section 3. One slight
adjustment that must be faced is that a realized/observable series

Y n =


y1

y2

...
yn


produces an observable vector

Zn =


zd+1

zd+2

...
zn


that is of length only n − d and, of course, Y n cannot be recovered from Zn
alone. This latter fact might initially cause some practical concern, as one
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ultimately typically wants to predict values yn+s, not values zn+s. But, in fact,
what needs doing is actually fairly straightforward.
Here we’re going to let ẑn stand for the ARMA(p, q) linear predictor of zn+1

based on Zn. Remember that care must then be taken in applying ARMA
formulas for predictors and prediction variances from previous sections, since
there the observable series begins with index t = 1 and here it begins with
index t = d+ 1. We’re going to argue that under a natural assumption on the
relationship of the differenced series to Y d, the best linear predictor for yn+1 is
easily written in terms of Y d,Zn, and ẑn.

Notice that Y n can be recovered from Y d and Zn by a simple recursion.
That is, since

Dd = (I − B)
d

=

d∑
j=0

(
d
j

)
(−1)

j Bj

one has for d = 1
yt = zt + yt−1

so that y1 and z2, . . . , zn produce Y n, for d = 2

yt = zt + 2yt−1 − yt−2

so that y1, y2 and z3, . . . , zn produce Y n, for d = 3

yt = zt + 3yt−1 − 3yt−2 + yt−3

so that y1, y2, y3 and z4, . . . , zn produce Y n, etc. In general

yt = zt −
d∑
j=1

(
d
j

)
(−1)

j
yt−j

and knowing Y d and Zn is completely equivalent to knowing Y n, and in fact
there is a non-singular n× n matrix Cn such that

Y n = Cn

(
Y d

Zn

)
and the (n, n) entry of such a Cn is 1.
So now consider a multivariate Gaussian model for(

Y d

Zn+1

)
The ARMA structure gives us an (n− d+ 1)-dimensional Gaussian model for
Zn+1. A plausible default assumption is then that the start-up vector Y d is
independent of this vector of d-order differences. Under this assumption, the
conditional mean of yn+1 given Y n is

E [yn+1|Y n] = E
[
cn+1

(
Y d

Zn+1

)
|Y n

]

43



for cn+1 the last row of Cn+1. But this is then (since Zn is a function of Y n)

cn+1

 Y d

Zn
E [zn+1|Y n]

 = cn+1

 Y d

Zn
E [zn+1|Y d,Zn]


= cn+1

 Y d

Zn
ẑn


and we see that one simply finds the ARMA predictor for zn+1 based on the
observed Zn and uses it in place of zn in what would be the linear reconstruction
of yn+1 based on Y d and Zn+1. In fact, since the last entry of the row vector
cn+1 is 1, the conditional distribution of yn+1|Y n is Gaussian with this mean
and variance that is the ARMA prediction variance for ẑn (that we note again
is not vn (1) but rather vn−d (1)). This line of reasoning then provides sensible
(Gaussian model) prediction intervals for yn+1 as

cn+1

 Y d

Zn
ẑn

± z√vn−d (1)

This development of a predictor (as a conditional mean) and its predic-
tion variance in a Gaussian ARIMA model then says what results when, more
generally, one replaces the independence assumption for Y d and Zn with an
assumption that there is no correlation between any entry of the first and an
entry of the second and looks for best linear predictors.

4.2 SARIMA(p, d, q)× (P,D,Q)s Models
Particularly in economic forecasting contexts, one often needs to do seasonal
differencing in order to remove more or less obviously regular patterns in a time
series. For example, with quarterly data, I might want to apply the operator

D4 = I − B4

to a raw time series Y before trying to model Z = D4Y as ARMA(p, q). The
standard generalization of this idea is the so-called SARIMA (seasonal ARIMA)
class of models.
We’ll say that Y is described by a SARIMA(p, d, q)× (P,D,Q)s model pro-

vided
Z = (I − B)

d
(I − Bs)D Y

has a representation in terms of a causal ARMA model defined by the equation

Φ (B) Φs (Bs)Z = Θ (B) Θs (Bs) ε (37)

where ε is white noise,

Φ (B) = I − φ1B − φ2B2 − · · · − φpBp

Φs (Bs) = I − φs,1Bs − φs,2B2s − · · · − φs,PBPs

Θ (B) = I + θ1B + θ2B2 + · · ·+ θqBq
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and
Θs (Bs) = I + θs,1Bs + θs,2B2s + · · ·+ θs,QBQs

Clearly, the operators

Φ∗ (B) ≡ Φ (B) Φs (Bs) and Θ∗ (B) ≡ Θ (B) Θs (Bs)

are backshift polynomial operators of respective orders p+ sP and q+ sQ, and
the basic SARIMA equation can be written as

Φ∗ (B)Z = Θ∗ (B) ε

that obviously specifies a special ARIMA model. Once one has written the
model equation this way, it is more or less clear how to operate. One must
fit parameters φ∗,θ∗, and σ2 (of total dimension p+ P + q +Q+ 1) using Zn
(that is of length n− (d+ sD)). (While Φ∗ (B) is of order p+ sP and in some
cases there are this many coeffi cients specifying Φ∗ (B), there are only p + P
parameters involved in defining those coeffi cients. While Θ∗ (B) is of order
q + sQ, there are only q + Q parameters involved in defining the coeffi cients
for Θ∗ (B).) Prediction for zn+s proceeds from knowing how to do ARMA
prediction, and then (ARIMA) prediction for yn+s follows from an assumption
that Y d+sD is uncorrelated with Zn.

The restriction to causal forms (37) is the restriction to cases where Φ∗ (B)
is invertible, is the restriction to forms where the polynomial corresponding to
Φ∗ (B) has no roots inside the unit circle. This, in turn, is the restriction to
parameter sets where polynomials corresponding to both Φ (B) and Φs (Bs) have
no roots inside the unit circle.
The form (37) can be motivated as follows. Suppose, for example, that

s = 4 (this would be sensible where quarterly economic data are involved). Let

Z1 =



...
z−3

z1

z5

...

 ,Z2 =



...
z−2

z2

z6

...

 ,Z3 =



...
z−1

z3

z7

...

 , and Z4 =



...
z0

z4

z8

...


and consider the possibility that for U white noise and

U1 =



...
u−3

u1

u5

...

 ,U2 =



...
u−2

u2

u6

...

 ,U3 =



...
u−1

u3

u7

...

 , and U4 =



...
u0

u4

u8

...


there are sets of P coeffi cients φ4 and Q coeffi cients θ4 and corresponding order
P and Q backshift polynomials Φ4 (B) and Θ4 (B) for which

Φ4 (B)Zj = Θ4 (B)U j for j = 1, 2, 3, 4
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This means that the Zj are uncorrelated, all governed by the same form of
ARMA(P,Q) model. These equations imply that

zt−φ4,1zt−4−φ4,2zt−8−· · ·−φ4,P zt−4P = ut+θ4,1ut−4+θ4,2ut−8+· · ·+θ4,Qut−4Q ∀t

which in other notation means that

Φ4

(
B4
)
Z = Θ4

(
B4
)
U (38)

Consider the P = 1 and Q = 0 version of this possibility. In this case,
the autocorrelation function for Z is 0 at lags that are not multiples of 4, and
for integer k, ρ (4k) = φ

|k|
4,1. On the other hand, for P = 0 and Q = 1, the

autocorrelation is 0 except at lag s = 4.
Now the fact that if U is white noise the Zj are uncorrelated (independent

in Gaussian cases) is usually intuitively not completely satisfying. But, if U
were MA(q) for q < 4 then the Zj would have the same distributions as when
U is white noise, but would not be uncorrelated. Or, if U were AR with small
coeffi cients φ, the model for a Zj might be nearly the same as for U white
noise, but again successive zt’s would not be uncorrelated.
So one is led to consider generalizing this development by replacing a white

noise assumption on U with an ARMA(p, q) assumption. That is, for invertible
Φ (B) and Θ (B) and white noise ε, as an alternative to relationship (38) we
might consider a model equation

Φ4

(
B4
)
Z = Θ4

(
B4
)
Φ−1 (B) Θ (B) ε

or applying Φ (B) to both sides

Φ (B) Φ4

(
B4
)
Z = Φ (B) Θ4

(
B4
)
Φ−1 (B) Θ (B) ε

= Θ (B) Θ4

(
B4
)
ε (39)

This is an s = 4 version of the general SARIMA equation (37). In the present
situation we expect that replacing a white noise model for U with an ARMA
model to produce a model forZ in which there are relatively big autocorrelations
around lags that are multiples of 4, but that also allows for some correlation
at other lags. In general, we expect a SARIMA model to have associated
autocorrelations that are "biggish" around lags that are multiples of s, but that
can be non-negligible at other lags as well.
For sake of concreteness and illustration, consider the SARIMA(1, 1, 1) ×

(0, 1, 1)4 version of relationship (39). This (for Z = (I − B)
(
I − B4

)
Y =(

I − B − B4 + B5
)
Y ) is

Z =
(
I + θ4,1B4

)
U

where U is ARMA(1, 1). That is,

Z =
(
I + θ4,1B4

)
(I − φ1B)

−1
(I + θ1B) ε
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for appropriate constants θ4,1, φ1, and θ1 and white noise ε. But this is

(I − φ1B)Z =
(
I + θ4,1B4

)
(I + θ1B) ε

=
(
I + θ1B + θ4,1B4 + θ1θ4,1B5

)
ε

and it is now evident that this is a special ARMA(1, 5) model for Z (that
is itself a very special kind of 5th order backshift polynomial function of Y ),
where three of the potentially p + q + Ps + Qs = 1 + 1 + 0 + 4 · 1 = 6 ARMA
coeffi cients are structurally 0, and the four that are not are functions of only
three parameters, φ1, θ1, and θ4,1. So then, how to proceed is more or less
obvious. Upon estimating the parameters (by maximum likelihood or some
other method) prediction here works exactly as in any ARIMA model.
This discussion of the fact that SARIMA models are special ARIMA mod-

els (under alternative parameterizations) brings up a related matter, that of
subset models. That is, in "ordinary" ARIMA(p, q) modeling, it is possible
to consider purposely setting to 0 particular coeffi cients in the defining polyno-
mial backshift operators Φ (B) and Θ (B). The resulting model has fewer than
p + q + 1 parameters that can be estimated by maximum likelihood or other
methods. And once this is done, prediction can proceed as for any ARIMA

model. The SAS FS
TM

software allows the specification and use of such models,

but as far as I can tell, the JMP
TM

software does not.

4.2.1 A Bit About "Intercept" Terms and Differencing in ARIMA
(and SARIMA) Modeling

The purpose of various kinds of differencing of a time series, Y , is the removal of
trend and corresponding reduction to a differenced series for which a stationary
model is appropriate. One of the options that standard time series software
usually provides is the use of an "intercept" in ARIMA modeling. Where Z
is derived from Y by some form of differencing, this is ARMA modeling of not
Z but rather Z − µ1 for a real parameter µ. That is, this is use of a model
specified by

Φ (B) (Z − µ1) = Θ (B) ε

Where (as is common) Φ (B) has an inverse, this is

Z = µ1 + Φ (B)
−1

Θ (B) ε

and EZ = µ1.
In many contexts, this is problematic if µ 6= 0. For Dr some difference

operator, EZ = µ1 implies that Eyt is an r-degree polynomial in t with leading
coeffi cient µ 6= 0. That means that for large t, Eyt is of order tr, "exploding" to
±∞ (depending upon the sign of µ). Typically this is undesirable, particularly
where one needs to make forecasts ŷn+s for large s (and for which Eyt will
dominate the computations). Note that if EZ = µ1 it’s the case that EDZ = 0.
So "another" differencing applied to a Z that needs an intercept in modeling,
produces a mean 0 series.
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But this last observation is not an indication that one should go wild with
differencing. Differencing reduces the length of a time series available for model
fitting, and can actually increase the complexity of a model needed to describe
a situation. To see this, consider a situation where Y (that could have been
produced by differencing some original series) is ARMA(p, q). That is, for white
noise ε,

Φ (B)Y = Θ (B) ε

for orders p and q polynomial backshift operators Φ (B) and Θ (B). Suppose
that Y is differenced. This produces DY that solves

Φ (B)DY = DΘ (B) ε

Thus (provided Φ (B) is invertible) DY has a causal ARMA(p, q + 1) represen-
tation, where (by virtue of the fact that the polynomial corresponding to D has
a root at 1) the model is not invertible. This has made the modeling more
complicated (in the move from ARMA(p, q) to ARMA(p, q + 1)).

So, one wants to difference only enough to remove a trend. It’s possible to
"over-difference" and ultimately make ARIMA modeling less than simple and
interpretable.

4.3 Regression Models With ARMA Errors

For wn a vector or matrix of observed covariates/predictors (values of variables
that might be related to Y n) we might wish to model as

Y n = gn (wn,β) +Zn

for Zn consisting of entries 1 through n of an ARIMA(p, d, q) series Z, gn is
a known function mapping to <n, and β is k-vector of parameters. Probably
the most important possibilities here include those where wn includes some
elements of one or more other time series (through time at most n) that one
hopes "lead" the Y series and wt contains all the values in wt−1, the function
gn is of the form

gn (wn,β) =


g1 (w1,β)
g2 (w2,β)

gn (wn,β)


for real-valued functions gt that are (across t) related in natural ways, and the
parameter vector has the same meaning/role for all t.
At least the Gaussian version of model fitting here is more or less obvious.

Where Z is ARMA,

Y n ∼ MVNn
(
(gn (wn,β)) ,Σφ,θ,σ2

)
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(for φ,θ, σ2 the ARMA parameters and Σφ,θ,σ2 the corresponding n×n covari-
ance matrix) and the likelihood function has the form

f
(
yn|β,φ,θ, σ2

)
=

1√
(2π)

n ∣∣det Σφ,θ,σ2
∣∣

× exp

(
−1

2
(yn − (gn (wn,β)))

′
Σ−1
φ,θ,σ2 (yn − (gn (wn,β)))

)
a function of m + p + q + 1 real parameters. This can be used to guide infer-
ence for the model parameters, leading to maximum likelihood estimates and
approximate confidence limits derived from the estimated covariance matrix (it-
self derived from the Hessian of the logarithm of this evaluated at the maximum
likelihood estimates).
When all entries of wn+s are available at time n, one can make use of the

multivariate normal distribution of(
yn
yn+s

)
that has mean (

gn (wn,β)
gn+s (wn+s,β)

)
and for Σφ,θ,σ2 as above has covariance matrix

Σφ,θ,σ2
n×n

 γφ,θ,σ2 (n+ s− 1)
...

γφ,θ,σ2 (s)


(
γφ,θ,σ2 (n+ s− 1) , . . . , γφ,θ,σ2 (s)

)
σ2


to find the conditional mean of yn+s given yn, that is the best linear predictor
for yn+s even without the Gaussian assumption. (Of course, in practice, one
will have not β,φ,θ, σ2 but rather estimates β̂, φ̂, θ̂, σ̂2, and the prediction will
be only some estimated best linear prediction.) And the Gaussian conditional
variance for yn+s given yn provides a prediction variance and prediction limits
as well.
All that changes in this story when Z is ARIMA is that one writes

(Y n − gn (wn,β)) = Zn

and then
Dd (Y n − gn (wn,β)) = DdZn

and carries out the above program with

Y ∗n = DdY n, g
∗
n (wn,β) = Ddgn (wn,β) , and Z∗n = DdZn

where now Z∗n consists of n − d elements of the ARMA series DdZ. Notice
that, fairly obviously, the differenced series Y ∗n has mean g

∗
n (wn,β) under this

modeling.
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4.3.1 Parametric Trends

We proceed to illustrate the usefulness of this formalism in a number of situa-
tions. To begin, note that for g (t|β) a parametric function of t, the choice of
wn = (1, 2, . . . , n)

gn (wn|β) =

 g (1|β)
...

g (n|β)


provides a model for Y that is

parametric trend+ARMA noise

(For example, g (t|β) could be a polynomial of order m− 1 and the entries of β
the coeffi cients of that polynomial.)

4.3.2 "Interventions"

As a second example, consider models with an "intervention"/mean shift at
time t0. If w is such that wt = 0 for t < t0 and wt = 1 for t ≥ t0 then an
ARMA(p, q) model for Y with an "intervention"/mean shift at time t0 uses the
MVNn distribution of Y n with mean βwn and n×n covariance matrix Σφ,θ,σ2 .
An ARIMA(p, d, q) model with mean shift for Y means that

Z = Dd (Y − βw)

is (mean 0) ARMA(p, q). Note for example that with d = 1 this prescription
makes the differenced Y series have mean

EDY = βDw

which is a series that is 0 except at time t0, where it is β. So for fitting the
ARMA(p, 1, q) model based on Y n, one uses the MVNn−1 distribution of DY n

with mean

gn (wn, β) =


0

(t0−2)×1

β
0

(n−t0)×1


and an (n− 1)× (n− 1) covariance matrix Σφ,θ,σ2 .
Related to these examples are models with a "pulse intervention/event" at

time t0 (essentially representing an outlier at this period). That is, with w as
above (with wt = 0 for t < t0 and wt = 1 for t ≥ t0), Dw is a unit pulse at time
t0. An ARMA(p, q) model for Y with a pulse of β at time t0 uses the MVNn
distribution of Y n with mean βDwn and n× n covariance matrix Σφ,θ,σ2 .
An ARIMA(p, d, q) model for Y with a pulse of β at t0 makes

Z = Dd (Y − βDw)
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ARMA(p, q). In the d = 1 case, this implies that the mean of the differenced
Y series is

EDY = βD2w

which is a series that is 0 except at time t0, where it is β, and at time t0 + 1
where it is −β. So for fitting the ARIMA(p, 1, q) model based on Y n, one uses
the MVNn−1 distribution of DY n with mean

gn (wn, β) =


0

(t0−2)×1

β
−β
0

(n−1−t0)×1


and (n− 1)× (n− 1) covariance matrix Σφ,θ,σ2 .
The timing of level shifts and/or pulses in a time series analysis is rarely

something that can be specified in any but empirical terms. One can sometimes
look back over a plot of the values yt versus t (or at a plot of ARMA or ARIMA
residuals ê∗t against t) and see that a level shift or designation of one or more
values as outliers will be needed to adequately describe a situation. But using a
future level shift or pulse in forecasting is not at all common, and would require
the specification of both t0 and β in advance of the occurrence of these events.

4.3.3 "Exogenous Variables"/Covariates and "Transfer Function"
Models

Now consider cases of the regression framework of this section where a covariate
series x is involved. Suppose then that for some r ≥ 0 (a "time delay" or "dead
time")

Λ (B) = Br
m−1∑
j=0

βjBj

is Br "times" a backshift polynomial of order m− 1, and set

gt (wt,β) = (Λ (B)x)t =
r+m−1∑
j=r

βjxt−j

for β =
(
βr, βr+1, . . . , βr+m−1

)
and wt = (x1−m−r, . . . , xt−r) producing

gn (wn,β) =


∑r+m−1
j=r βjx1−j

...∑r+m−1
j=r βjxn−j


Then (depending upon how far into the past one has available values of the
x series) a multivariate normal distribution for some final part of Y n can be
used in fitting the coeffi cients of an ARMA or ARIMA model for Y . Assuming
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that values of xt through time n are available, means gt (wt,β) = Eyt through
time t = n+ r are available, and so too are Gaussian conditional means/linear
forecasts of yt and Gaussian prediction limits.
It is worth noting at this point that in economic forecasting contexts, it’s

common for external series xn available at time n to come with forecasts x̂n+1, x̂n+2, x̂n+3, . . .
(produced from unspecified sources and considerations). In such cases, these
are often used in place of honest observed values xn+s in the form

r+m−1∑
j=r

βjxt−j

to produce approximate values of gt (wt,β) for t > n + r in order to forecast
beyond time t = n+ r.

It appears that SAS FS
TM

is willing to somehow make forecasts beyond
period t = n+ r even in the absence of input forecasts x̂n+1, x̂n+2, x̂n+3, . . .. I
honestly don’t know what the program is doing in those cases. My best guess
is that x̂n+1, x̂n+2, x̂n+3, . . . are all set to the last observed value, xn.

A model for Y that says that

yt =

r+m−1∑
j=r

βjxt−j + zt ∀t

where zt is mean 0 ARMA(p, q) noise can be written in other terms as

Y = Λ (B)x+Z

where Z solves
Φ (B)Z = Θ (B) ε

for ε white noise. That is, Y solves

Φ (B) (Y − Λ (B)x) = Θ (B) ε

Or, for example, an ARIMA(p, 1, q) model for Y with mean function Λ (B)x
makes

D (Y − Λ (B)x)

ARMA(p, q) and the mean of the differenced Y series is

EDY = Λ (B)Dx

A generalization of this development that is sometimes put forward as an
effective modeling tool is the use of not "backshift polynomials" but rather
"rational functions in the backshift operator." The idea here is to (with Λ (B)
as above) consider time-invariant linear operators of the form

Ω (B)
−1

Λ (B)
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for
Ω (B) = I − α1B−α2B2− · · ·−αlBl

as "transfer functions," mapping input x series to mean functions for Y . In
order to get some insight into what this promises to do, consider the case where
r = 2,m = 3 and l = 1 where it is easy to see in quite explicit terms what this
operator looks like. That is, for |α1| < 1

Ω (B)
−1

Λ (B) = (I − α1B)
−1 (B2

(
β0B0 + β1B1 + β2B2

))
=

( ∞∑
s=0

αs1Bs
)(

β0B2 + β1B3 + β2B4
)

= β0B2 + (α1β0 + β1)B3 +
(
α2

1β0 + α1β1 + β2

)
B4

+

∞∑
s=5

(
α2

1β0 + α1β1 + β2

)
αs−4

1 Bs

That is, this time-invariant linear operator Ω (B)
−1

Λ (B) has impulse response
function with values

ψs =


0 for s < 2
β0 for s = 2

α1β0 + β1 for s = 3(
α2

1β0 + α1β1 + β2

)
αs−4

1 for s ≥ 4

Here, r = 2 governs the delay, m = 3 governs how long the coeffi cients of
Λ (B) directly impact the character of the impulse response (beyond s = m the
character of the impulse response is the exponential decay character of that
of Ω (B)

−1) and for s ≤ m the coeffi cients in Λ (B) and Ω (B)
−1 interact in

a patterned way to give the coeffi cients for Ω (B)
−1

Λ (B). These things are
not special to this case, but are in general qualitatively how the two backshift
polynomials combine to produce this rational function of the backshift operator.
Clearly then,

Y = Ω (B)
−1

Λ (B)x+Z (40)

where Z solves
Φ (B)Z = Θ (B) ε

for ε white noise is a model for Y with mean Ω (B)
−1

Λ (B)x and ARMA de-
viations from that mean function. Of course, rewriting slightly, in this case Y
solves

Φ (B)
(
Y − Ω (B)

−1
Λ (B)x

)
= Θ (B) ε (41)

Or, for example, an ARIMA(p, 1, q) model for Y with mean function Ω (B)
−1

Λ (B)x
makes

D
(
Y − Ω (B)

−1
Λ (B)x

)
ARMA(p, q) and the mean of the differenced Y series is

EDY = Ω (B)
−1

Λ (B)Dx
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Gaussian-based inference for a "transfer function model" like models (40)
and (41) is again more or less "obvious," as is subsequent prediction/forecasting
using fitted model parameters as "truth," provided one has an adequate set of
values from x to support calculation of the model’s mean for yn+s. That is,
a representation like (40) or (41) provides a mean for Y n that is a function
of the parameters α,β,φ,θ, σ2, and a covariance matrix that is a function of
φ,θ, σ2. Adoption of a Gaussian assumption provides a likelihood function for
these (l+m+p+q+1 univariate) parameters that can guide inference for them.
Forecasting then proceeds as for all ARMA models.

4.3.4 Sums of the Above Forms for EY

It is, of course, possible that one might want to include more than one of the
basic cases of gn (wn,β) laid out above in a single time series model. There
could be in a single application reason to use a parametric trend, multiple
intervention events, and multiple covariates. There is really no conceptual
problem with handling these in a single additive form for EY n. That is, for k
instances of the basic structure under discussion,

gin
(
wi
n,β

i
)
for i = 1, 2, . . . , k

One can employ a mean function of the form

gn (wn,β) =

k∑
i=1

gin
(
wi
n,β

i
)

and (with
∑k
i=1mi univariate parameters β

i
j) handle for example multiple out-

liers, multiple covariate series, etc. in a single regression model with ARMA (or
ARIMA) noise.

4.3.5 Regression or Multivariate Time Series Analysis?

It should be emphasized before going further that the discussion here has treated
the covariate as "fixed." To this point there has been no attempt to, for ex-
ample, think of a covariate series x as having its own probabilistic structure or
joint probabilistic structure with Y . To this point (just as in ordinary linear
models and regression analysis) we’ve been operating using only conditional dis-
tributions for Y given values of the covariates. Multivariate time series analysis
(that would, for example, allow us to treat x as random) is yet to come.

5 Some Considerations in the Practice of Fore-
casting

When using (the extensions of) ARMA modeling in forecasting we desire (at
least)
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1. simple models,

2. statistically significant estimates of parameters,

3. good values of "fit" criteria,

4. residuals that look like white noise, and

5. good measures of prediction accuracy.

In the first place, as in all of statistical modeling, one is look for simple, parsi-
monious, interpretable descriptions of data sets and the scenarios that generate
them. Simple models provide convenient mental constructs for describing, pre-
dicting, and manipulating the phenomena they represent. The more complex a
model is, the less "handy" it is. And further, if one goes too far in the direction
of complexity looking for good fit to data in hand, the worse it is likely to do in
prediction.
Typically, 0 parameters in a model mean that it reduces to some some sim-

pler model (that doesn’t include those parameters). So where a parameter
estimate isn’t "statistically significant"/"detectably different from 0" there is
the indication that some model simpler than the one under consideration might
be an adequate description of data in hand. Further, poorly determined pa-
rameters in fitted models are often associated with unreliable extrapolations
beyond the data set in hand. A parameter that is potentially positive, 0, or
negative could often produce quite different extrapolations depending upon very
small changes from a current point estimate. One wants to have a good handle
on the both sign and magnitude of one’s model parameters.
Standard measures of fit that take into account both how well a model will

reproduce a data set and how complex it is are Akaike’s information criterion
and Schwarz’s Bayesian information criterion. These are computed by JMP and
other time series programs and are respectively

AIC = −2 ·Gaussian loglikelihood+ 2 · number of real parameters
SBC = −2 ·Gaussian loglikelihood+ ln (n) · number of real parameters

These criteria penalize model complexity, since small values are desirable.
Plots of estimated autocorrelations for residuals, use of the Ljung-Box sta-

tistics QLBh , and other ideas of Section 3.4 can and should be brought to bear
on the question of whether residuals look like white noise. Where they don’t,
inferences and predictions based on a fitted model are tenuous and there is ad-
ditionally the possibility that with more work, more pattern in the data might
be identified and exploited.
There are many possible measures of prediction accuracy for a fitted time

series model. We proceed to identify a couple and consider how they might be
used. For the time being, suppose that for a model fit to an entire available data
series Y n (we’ll here not bother to display the estimated model parameters) let
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ŷt be the (best linear) predictor (in the fitted model) of yt based on Y t−1.
Measures of prediction accuracy across the data set include

R2 =

∑n
t=1 (yt − ȳn)

2 −
∑n
t=1 (yt − ŷt)2∑n

t=1 (yt − ȳn)
2

exactly as in ordinary regression analysis,

σ̂2

(though this is far less directly interpretable than it is, for example, in regres-
sion), the mean absolute error

MAE =
1

n

n∑
t=1

|yt − ŷt|

the mean absolute percentage error

MAPE =
1

n

n∑
t=1

|yt − ŷt|
|yt|

× 100%

and the so-called "symmetric" mean absolute percentage error

SMAPE =
1

n

n∑
t=1

|yt − ŷt|
.5 (|yt|+ |ŷt|)

× 100%

(The latter is not so symmetric as its name would imply. For example, with
positive series, over-prediction by a fixed amount is penalized less than under-
prediction by the same amount.) Any or all of these criteria can be computed
for a given model and compared to values of the same statistics for alternative
models.
An important way of using particularly the statistics of prediction accuracy

is to make use of them with so-called "hold-out" samples consisting of the final
h elements of Y n. That is, rather than fitting a candidate model form to all n
observations, one might fit to only Y n−h, holding out h observations. USING
THIS 2nd VERSION OF THE FITTED MODEL, let ŷht be the (best linear)
predictor (in the fitted model) of yt based on Y t−1. One might then compute
hold-out sample versions of accuracy criteria, like

MAEh =
1

h

n∑
t=n−h+1

∣∣yt − ŷht ∣∣
MAPEh =

1

h

n∑
t=n−h+1

∣∣yt − ŷht ∣∣
|yt|

× 100%

and

SMAPEh =
1

h

n∑
t=n−h+1

∣∣yt − ŷht ∣∣
.5
(
|yt|+

∣∣ŷht ∣∣) × 100%
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across several values of h (like, for example, 4, 6, and 8). Note then, that for
every h under consideration (including h = 0), there is an estimated set of para-
meters computed on the basis of Y n−h, a "regular" version of MAE,MAPE,
and SMAPE computed across Y n−h using those fitted parameters (that one
might call an "in-sample" value of the criterion), and the hold-out versions of
the criteria MAEh,MAPEh, and SMAPEh computed across yn−h+1, . . . , yn.
One doesn’t want parameter estimates to change much across h. (If they do,
there is indication that the fitting of the model form is highly sensitive to the
final few observed values.) One doesn’t want in-sample and hold-out versions
of a criterion to be wildly different. (If they are, the holdout version is almost
always bigger than the in-sample version, and one must worry about how the
model form can be expected to do if more data become available at future peri-
ods.) And one doesn’t want the criteria to be wildly different across h. (Model
effectiveness shouldn’t depend strongly upon exactly how many observations are

available for fitting.) The SAS FS
TM

software makes analysis with hold-outs
very easy to do.

6 Multivariate Time Series

One motivation for considering multivariate time series (even when forecasting
for a univariate Y is in view) is the possibility of applying pieces of multivariate
time series methodology to the problem of using covariate series x (now modeled
as themselves random) in the forecasting. But to provide a general notation
and development, suppose now that Y is ∞×m,

Y =



...
...

y−11 y−12 · · · y−1m

y01 y02 · · · y0m

y11 y12 · · · y1m

...
...

 =



...
y−1

y0

y1
...


where

yti = the value of the ith series at time t

and the t row of Y is
yt = (yt1, yt2, . . . , ytm)

Define
µt = Eyt

and
γij (t+ h, t) = Cov (yt+h,i, ytj)

and

Γ
m×m

(t+ h, t) =
(
γij (t+ h, t)

)
i=1,...,m
j=1,...,m

= E
(
yt+h − µt+h

)′
(yt − µt)
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This is a matrix of covariances between variables i and j at respective times
t+ h and t. It is not a covariance matrix and it is not necessarily symmetric.

6.1 Multivariate Second Order Stationary Processes

We’ll say that Y is second order or weakly stationary if neither µt nor
Γ (t+ h, t) depends upon t. Note that when Y is multivariate second order
stationary, each series {yti} is univariate second order stationary. In the event
of second order stationarity, we may write simply µ and Γ (h), the latter with
entries γij (h), the cross-covariance functions between series i and j. No-
tice that unlike autocovariance functions, the cross-covariance functions are not
even, that is, in general γij (h) 6= γij (−h). What is true however, is that

γij (h) = γji (−h)

so that
Γ (h) = Γ′ (−h)

We’ll call

ρij (h) =
γij (h)√

γii (0) γjj (0)

the cross-correlation function between series i and series j. Assembling
these in matrices, we write

R (h) =
(
ρij (h)

)
i=1,...,m
j=1,...,m

and note that (of course) following from the properties of cross-covariances

ρij (h) = ρji (−h)

so that
R (h) = R′ (−h)

In a context where what is under consideration are random univariate series
Y and x and the intent is to use the covariate x to help forecast Y , it will
presumably be those cases where ∣∣ρyx (h)

∣∣
is large for positive h where the x series is of most help in doing the forecasting
(one hopes for x that is strongly related to y and is a leading indicator of y).
There is a notion of multivariate white noise that is basic to defining tractable

models for multivariate time series. That is this. An ∞ × m second order
stationary series

ε =



...
ε−1

ε0

ε1

...


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is called white noise with mean 0 and covariance matrix Σ provided

µ = 0 and Γ (h) =

{
Σ if h = 0
0 otherwise

Multivariate white noise series can be used to define multivariate series with
more complicated dependence structures. To begin, for ε multivariate white
noise, if

y′t =

∞∑
j=−∞

Cjε
′
t−j

where the m ×m matrices Cj have absolutley summable (across j) elements,
then the multivariate series

Y =



...
y−1

y0

y1
...


is called a linear process. Where all Cj are 0 for j < 0, Y is termed a
multivariate MA(∞) process.
There are mutlivariate ARMA processes that will be considered below.

Any causal multivariate ARMA(p, q) process Y can be represented in "AR(∞)"
form as

y′t −
∞∑
j=1

Ajy
′
t−j = ε′t ∀t

for white noise ε where the matrices Aj have absolutely summable (across j)
elements.

6.2 Estimation of Multivariate Means and Correlations
for Second Order Stationary Processes

The vector sample mean through period n,

ȳn =
1

n

n∑
t=1

yt

is the obvious estimator of the mean µ of a second order stationary process.
Proposition 7.3.1 of BDM provides simple statements of the (mean square error)
consistency of that estimator. That is, if Y is second order stationary with
mean µ and covariance function Γ (h), the condition γjj (n)→ 0 ∀j is suffi cient
to guarantee that

E (ȳn − µ) (ȳn − µ)
′

= E
m∑
j=1

(
ȳnj − µj

)2 → 0
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And the stronger condition
∑∞
h=−∞

∣∣γjj (h)
∣∣ < ∞ ∀j is suffi cient to guarantee

the stronger result that

nE (ȳn − µ) (ȳn − µ)
′

= nE
m∑
j=1

(
ȳnj − µj

)2 → m∑
j=1

∞∑
h=−∞

γjj (h)

An "obvious" estimator of the matrix cross-covariance function is

Γ̂n (h) =


1

n

n−h∑
t=1

(
yt+h − ȳn

)′
(yt − ȳn) for 0 ≤ h ≤ n− 1

Γ̂
′
n (−h) for − n+ 1 ≤ h < 0

which has entries

γ̂ij (h) =
1

n

n−h∑
t=1

(yt+h,i − ȳn,i)′ (yt,j − ȳn,j) 0 ≤ h ≤ n− 1

From these, estimated cross-correlation functions are

ρ̂ij (h) =
γ̂ij (h)√

γ̂ii (0) γ̂jj (0)

and of course the i = j version of this is the earlier autocorrelation function for
the ith series.
In looking for predictors x and lags at which those predictors might be useful

in forecasting y, one needs some basis upon which to decide when
∣∣ρ̂yx (h)

∣∣ is of
a size that is clearly bigger than would be seen "by chance" if the predictor is
unrelated to y. This requires some distributional theory for the sample cross-
correlation. Theorem 7.3.1 BDM provides one kind of insight into how big
sample cross-correlations can be "by chance" (and what will allow them to be
big without indicating that in fact

∣∣ρyx (h)
∣∣ is big). That result is as follows.

Suppose that for iid εt,1 with mean 0 and variance σ2
1 independent of iid εt,2

with mean 0 and variance σ2
2,

yt =

∞∑
k=−∞

αkεt−k,1 ∀t

and

xt =

∞∑
k=−∞

βkεt−k,2 ∀t

for
∑∞
k=−∞ |αk| <∞ and

∑∞
k=−∞ |βk| <∞ (so that yt and xt are independent

and thus uncorrelated linear processes). Then for large n and h 6= k

√
n

(
ρ̂yx (h)
ρ̂yx (k)

)
·∼ MVN2

(
0,

(
v c
c v

))

60



for

v =

∞∑
j=−∞

ρyy (j) ρxx (j) and c =

∞∑
j=−∞

ρyy (j) ρxx (j + k − h)

Of course, an alternative statement of the limiting marginal distribution for
ρ̂yx (h) for any h when the series are independent, is that ρ̂yx (h) is approxi-
mately normal with mean 0 and standard deviation√√√√√ 1

n

1 + 2

∞∑
j=1

ρyy (j) ρxx (j)


This result indicates that even when two series are independent and model

cross-correlations are thus 0, they can have large sample cross-correlations if
their autocorrelation functions more or less "line up nicely." There is thus
in general no simple cut-off value that separates big from small sample cross-
correlations. But notice that if (at least) one of the series yt or xt is white
noise, v = 1 and we have the result that for any h,

√
nρ̂yx (h)

·∼ N (0, 1)

So with high probability ∣∣ρ̂yx (h)
∣∣ < 2√

n

and in this case there is a simple yardstick (that doesn’t vary with the charac-
ter of the non-white-noise process) against which one can judge the statistical
significance of sample cross-correlations.
The practical usefulness of this insight in data analysis is this. If one fits

a time series model to one of the series Y or x and then computes residuals,
sample autocorrelations between the other series and the residual series should
be small (typically less than 2/

√
n in magnitude) if the original Y and x series

are independent second order stationary series. The notion of reducing one of
the series to residuals before examining sample cross-correlations is known as
whitening or pre-whitening.
To be absolutely explicit about what is being suggested here, suppose that

some ARIMA (or SARIMA) model has been fit to Y , i.e. one has found para-
meters so that for some difference operator D∗,

D∗ Y ∼ ARMA(p, q) ,

ê∗t for t = 1, 2, . . . , n is the corresponding set of (standardized) residuals, and
D∗X is the corresponding differenced covariate series. Then (provided the
D∗X series is itself stationary) looking at values of

ρ̂ê∗,D∗x (h)

is a way of looking for lags at which the predictor might be an effective covari-
ate for forecasting of yt. If, for example, ρ̂ê∗,D∗x (4) greatly exceeds 2/

√
n in
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magnitude, using a differenced version of the predictor lagged by 4 periods in
a form for the mean of D∗Y (that is, βx∗t−4 in the mean of yt) is a promising
direction in a transfer function model search.

6.3 Multivariate ARMA Processes

These seem far less useful in practice than their univariate counterparts, but if
for no other reason to see how the univariate ideas generalize, we will briefly
consider them.

6.3.1 Generalities

We will say that a mean 0 second order stationary multivariate process model
for Y is ARMA(p, q) provided there exist m × m matrices Φj and Θj and a
covariance matrix Σ such that for every t

y′t −Φ1y
′
t−1 − · · · −Φpy

′
t−p = ε′t + Θ1ε

′
t−1 + · · ·+ Θqε

′
t−q

for

ε =



...
ε−1

ε0

ε1

...


white noise with mean 0 and covariance matrix Σ. Y is mean µ ARMA(p, q)
provided

Y −



...
µ
µ
µ
...


is mean 0 ARMA(p, q).
A standard simple example of a multivariate ARMA process is the AR(1)

case. This is the case where

y′t = Φy′t−1 + ε′t ∀t

for an m × m matrix Φ1 and white noise ε. As it turns out, provided all
eigenvalues of Φ are less than 1 in magnitude, one may (in exact analogy with
the m = 1 case) write

y′t =

∞∑
j=0

Φjε′t−j ∀t

The components of Φj are absolutely summable and Y is a linear process with
an MA(∞) form.
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Causality and invertibility for multivariate ARMA processes are exactly
analogous to those properties for univariate ARMA processes. First, a multi-
variate ARMA process is causal if there existm×mmatricesΨj with absolutely
summable components such that

y′t =

∞∑
j=0

Ψjε
′
t−j ∀t

When there is causality, exactly as indicated in display (35) for univariate cases,
the matrices Ψj can be computed from the recursion

Ψj = Θj +

p∑
k=1

ΦkΨj−k for j = 0, 1, . . .

where Θ0 = I,Θj = 0 for j > q and Ψj = 0 for j < 0

Clearly, provided all eigenvalues ofΦ are less than 1 in magnitude, a multivariate
AR(1) process is causal with Ψj = Φj .
Then, a multivariate ARMA process is invertible if there exist m × m

matrices Πj with absolutely summable components such that

ε′t =

∞∑
j=0

Πjy
′
t−j ∀t

When there is invertibility, exactly as indicated display (36) for univariate cases,
the matrices Πj can be computed from the recursion

Πj = −Φj −
q∑

k=1

ΘkΠj−k for j = 0, 1, . . .

where Φ0 = −I,Φj = 0 for j > p and Πj = 0 for j < 0

An annoying feature of the multivariate ARMA development is that even re-
striction to causal and invertible representations of multivariate ARMA processes
is not suffi cient to deal with lack-of-identifiability issues. That is, a single mean
and covariance structure for a multivariate time series Y can come from more
than one causal and invertible ARMA model. To see this is true, consider
an example (essentially one on page 243 of BDM) of an m = 2 case of AR(1)
structure with

Φ =

[
0 c
0 0

]
for |c| < 1. Since for j ≥ 2 it is the case that Φj = 0,

y′t = ε′t + Φε′t−1 ∀t

and Y also has an MA(1) representation. One way out of this lack-of-identifiability
problem that is sometimes adopted is to consider only pure AR multivariate
processes, i.e. only ARMA(p, 0) models.
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6.3.2 Covariance Functions and Prediction

The matrix function of lagged cross covariances Γ (h) =E
(
yt+h − µt+h

)′
(yt − µt)

for a causal multivariate ARMA process turns out to be (in direct analogy to
the univariate form for the autocovariance function of univariate linear processes
(10))

Γ (h) =

∞∑
j=0

Ψh+jΣΨ′j

and often this series converges fast enough to use a truncated version of it for
practical computation of Γ (h). Alternatively (in exact analogy to what is in
Section 3.2 for univariate ARMA processes) one can use a recursion to compute
values of Γ (h). That is,

Γ (j)−
p∑
k=1

ΦkΓ (j − k) =

q∑
k=j

ΘkΣΨk−j ∀j ≥ 0

Using the fact that Γ (−h) = Γ′ (h) the instances of this equation for j =
0, 1, . . . , p can be solved simultaneously for Γ (0) ,Γ (1) , . . . ,Γ (p). Then the
recursion can then be used to find Γ (h) for h > p. In any case, there is a
computational path from the ARMA model parameters Φj ,Θj , and Σ to the
function Γ (h).
Then, at least conceptually, the path to best linear prediction in multivariate

ARMA models is clear. After properly arranging the elements of Y that are
to be predicted and those to be used for prediction into a single column vector
and writing the corresponding covariance matrix (in terms of values of Γ (h))
the usual formulas for a multivariate normal conditional mean and conditional
covariance matrix lead to best linear predictors and their prediction covariance
matrices. (All else beyond this is detail of interest to time series specialists and
those who will program this in special cases and need to make use of computa-
tional shortcuts available in particular models and prediction problems.)
To make concrete what is intended in the previous paragraph, consider the

prediction of yn+1 from Y n in any multivariate second order stationary process
with mean µ and matrix function of lagged cross covariances Γ (h) (including
multivariate ARMA processes). If we rearrange the (n+ 1)×m matrix Y n+1

into an ((n+ 1)m)-dimensional column vector as

Y ∗n+1 =


y′1
y′2
...
y′n
y′n+1


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second order stationarity produces

EY ∗n+1 =


µ′

µ′

...
µ′

µ′


and

Var
(
Y ∗n+1

)
=


Γ (0) Γ (−1) Γ (−2) · · · Γ (−n)
Γ (1) Γ (0) Γ (−1) · · · Γ (−n+ 1)
Γ (2) Γ (1) Γ (0) · · · Γ (−n+ 2)
...

...
...

. . .
...

Γ (n) Γ (n− 1) Γ (n− 2) · · · Γ (0)


(Remember that Γ (h) = Γ′ (−h) so that this matrix really is symmetric.) But
now under a Gaussian assumption, it’s in theory perfectly possible to identify
the mean and variance of the conditional distribution of the last m entries of
Y ∗n+1 given the first nm of them. The conditional mean is the best linear
predictor of y′n+1 based on Y n, and the conditional covariance matrix is the
prediction covariance matrix.

6.3.3 Fitting and Forecasting with Multivariate AR(p) Models

Presumably because there is ambiguity of representation of second order struc-
tures using multivariate ARMA models unless one further narrows the set of
possibilities, BDM deal specifically with the class of multivariate AR(p) models
in their Section 7.6. There are basically two lines of discussion in that section.
In the first place, narrowing one’s focus to pure AR models makes it possible to
identify effi cient ways to compute a 0 mean Gaussian likelihood

f (Y n|Φ1, . . . ,Φp,Σ)

thereby potentially making Gaussian-based inference practical in such models.
The authors note that one must select an order (p) based on data, and suggest
(AR model) selection criteria like

AICC = −2 ln f
(
Y n|Φ̂1, . . . , Φ̂p, Σ̂

)
+

2
(
pm2 + 1

)
nm

nm− pm2 − 2

to make sure that one takes account of the very large model complexity implicit
in anything by a very low order multivariate ARMA model.
The second line of discussion concerns prediction in multivariate AR(p)

processes. For n ≥ p, s-step-ahead multivariate AR(p) forecasts are very sim-
ple. The 0 mean version is this. First (with ŷn+s the s-step-ahead from time
n)

ŷ′n+1 = Φ1y
′
n + · · ·+ Φpy

′
n+1−p
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and then

ŷ′n+2 = Φ1ŷ
′
n+1 + Φ2y

′
n + · · ·+ Φpy

′
n−p and

ŷ′n+3 = Φ1ŷ
′
n+2 + Φ2ŷ

′
n+1 + Φ3y

′
n + · · ·+ Φpy

′
n−p−1

etc. Prediction covariance matrices for s-step-ahead multivariate AR(p) fore-
casts are simply

s−1∑
j=0

ΨjΣΨ′j

6.3.4 Multivariate ARIMA (and SARIMA)Modeling and Co-Integration

There is the possibility of using a multivariate ARMA model after differencing
a set of m series making up a multivariate Y . That is, for D∗ some difference
operator and

Y =
(
Y 1,Y 2, . . . ,Y m

)
where each Y j is an ∞× 1 series, we can agree to write D∗Y for the ∞×m
multivariate series

(
D∗Y 1,D∗Y 2, . . . ,D∗Y m

)
and adopt a multivariate ARMA

model for D∗Y . (Depending upon the exact nature of D∗) D∗Y is then mul-
tivariate ARIMA (or SARIMA).
There is another idea for producing a stationary series from Y , that (instead

of differencing down columns) focuses on combining the columns of Y to produce
a second order stationary series. This is the concept of co-integration. The
motivation is that the columns of Y may not be second order stationary, while
some linear combination of the elements of yt moves in a consistent/stationary
way that can be modeled using the methods discussed thus far.
The version of the idea discussed by BDM is this. Say that ∞×m multi-

variate series Y is integrated of order d if DdY is second order stationary
and Dd−1Y is not. Then if Y is integrated of order d and there exists an m×1
vector α such that the ∞× 1 series Z = Y α is integrated of order less than d,
we’ll say that Y is co-integrated with co-integration vector α.
A fairly concrete example of co-integration provided on BDM page 255 is

this. Suppose that ∞× 1 series Y satisfies

DY = ε

for εmean 0 white noise. Y is a random walk and is not second order stationary.
Let Z be univariate white noise independent of Y and define

W = Y +Z

Then the multivariate series (Y ,W ) is integrated of order 1. (D (Y ,W ) =
(ε, ε+DZ) and it’s fairly easy to show that this is second order stationary.)
But consider α = (−1, 1)

′ and

(Y ,W )α = −Y + (Y +Z) = Z
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which is second order stationary. So (Y ,W ) is co-integrated with co-integration
vector (−1, 1)

′. The basic idea is that the component series Y andW are non-
stationary, but their difference is stationary. They both wander about like
random walks, but they "wander together" and their difference is in some sense
stable.

7 Heuristic Time Series Decompositions/Analyses
and Forecasting Methods

There are any number of heuristics for time series analysis and forecasting that
have no firm basis in probability modeling, but have nevertheless proved useful
over years of practice. We consider a few of these, concentrating on ones
discussed in Section 1.5 and Chapter 9 of BDM.

7.1 "Classical" Decomposition of Y n

A conceptually attractive decomposition of an observed univariate time series
is as

yt = mt + st + nt for t = 1, 2, . . . , n (42)

where for some d > 0

st+d = st ∀t and
d∑
j=1

sj = 0 (43)

Here mt represents "trend," st is a "seasonal component," and what’s left over,
nt, is "noise." More or less standard/classical fitting of this structure proceeds
as follows.
First, we compute a preliminary version of trend using a moving average

matched to d and designed so that under the conceptualization (42) and (43)
it is unaffected by the seasonal components. That is, for d even, say d = 2q,
define

m̃t =
1

d

1

2
(yt−q + yt+q) +

q−1∑
j=−q+1

yt+j


and for d odd, say d = 2q + 1, define

m̃t =
1

d

q∑
j=−q

yt+j

(Under these definitions, each m̃t includes exactly one copy of each sj for j =

1, 2, . . . , d as a summand, and since
∑d
j=1 sj = 0 values of these do not affect

the values m̃t.)
Second, we compute preliminary versions of fitted seasonal components as

s̃j = average of {yj − m̃j , yj+d − m̃j+d, yj+2d − m̃j+2d, . . .} for j = 1, 2, . . . , d
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Now these won’t necessarily add to 0, so define final versions of fitted seasonal
components as

ŝj = s̃j −
1

d

d∑
j=1

s̃j for j = 1, 2, . . . , d

Then deseasonalized/seasonally adjusted values of the data are

dt = yt − ŝt

Next, we compute final versions of the fitted trend, say m̂t, using some
smoothing method applied to the deseasonalized values, dt. Possible modern
methods of smoothing that could be used include smoothing splines and ker-
nel smoothers. Classical methods of smoothing traditionally applied include
moving average smoothing of the form

m̂t =
1

2q + 1

q∑
j=−q

dt+j ,

polynomial regressions, and exponential smoothing, where

m̂t = αdt + (1− α) m̂t−1

for some fixed α ∈ (0, 1).
Then, of course, n̂t is what is left over

n̂t = yt − m̂t − ŝt

7.2 Holt-Winters Smoothing/Forecasting

There are both ordinary and seasonal versions of this methodology. We’ll
describe both.

7.2.1 No Seasonality

The basic idea here is a kind of adaptive/exponentially smoothed linear extrap-
olation/forecasting where

ŷn+s = ân + b̂ns (44)

for ân and b̂n respectively fitted/smoothed "level" and "slope" of the time series
at time t = n. Beginning at time t = 2, one might define

â2 = y2 and b̂2 = y2 − y1

Then for 3 ≤ t ≤ n one defines fitted values recursively by

ŷt = ât−1 + b̂t−1 (1)
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(this is the fitted level at time t − 1 incremented by 1 times the fitted slope
at time t − 1). Levels and slopes are updated recursively in an "exponential
smoothing" way, i.e. via

ât = αyt + (1− α) ŷt

for some fixed α ∈ (0, 1) and

b̂t = β (ât − ât−1) + (1− β) b̂t−1

for some fixed β ∈ (0, 1).
The smoothing parameters α and β control how fast the fitted level and

slope can change. They might be chosen to minimize a criterion like

Q (α, β) =
n∑
t=3

(yt − ŷt)2

BDM claim that this version of H-W forecasting (that ultimately makes use of
the linear extrapolation (44)) is for large n essentially equivalent to forecasting
using an ARIMA model

D2Y =
(
I − (2− α− αβ)B + (1− α)B2

)
ε

7.2.2 With Seasonality

A seasonal version of the Holt-Winters algorithm produces extrapolations/forecasts

ŷn+s = ân + b̂ns+ ĉn+s (45)

where ân and b̂n are respectively fitted/smoothed "level" and "slope" of the time
series at time t = n and ĉn+s = ĉn+s−kd for k the smallest non-negative integer
for which n+ s− kd ≤ n and ĉn−d+1, ĉn−d+2, . . . , ĉn−1, ĉn are fitted/smoothed
versions of "seasonal components" of the series relevant at time t = n. Begin-
ning at time t = d+ 1, we define

âd+1 = yd+1 and b̂d+1 = (yd+1 − y1) /d

and take
ĉt = yt −

(
y1 + b̂d+1 (t− 1)

)
for t = 2, . . . , d+ 1

Then for t > d+ 1,fitted values are updated recursively via

ŷt = ât−1 + b̂t−1 (1) + ĉt−d

(this is the fitted level at time t− 1 incremented by 1 times the fitted slope at
time t−1 plus fitted seasonal component for time t). Levels, slopes and seasonal
components are updated recursively in an "exponential smoothing" way, i.e. via

ât = α (yt − ĉt−d) + (1− α)
(
ât−1 + b̂t−1 (1)

)
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for some fixed α ∈ (0, 1) and

b̂t = β (ât − ât−1) + (1− β) b̂t−1

for some fixed β ∈ (0, 1) and

ĉt = γ (yt − ât) + (1− γ) ĉt−d

for some fixed γ ∈ (0, 1).
As in the nonseasonal case, parameters α, β, and γ control how fast the fitted

level, slope, and seasonal components can change. They might be chosen to
minimize a criterion like

Q (α, β, γ) =

n∑
t=d+2

(yt − ŷt)2

Further, much as for the nonseasonal case of Holt-Winters forecasting, BDM
suggest that the present seasonal version of H-W forecasting (that ultimately
makes use of the extrapolation (45)) is for large n essentially equivalent to
forecasting using an ARIMA model specified by

DDdY =

d−1∑
j=0

Bj + γ (1− α)BdD − (2− α− αβ)

d∑
j=1

Bj + (1− α)

d+1∑
j=2

Bj
 ε

8 Direct Modeling of the Autocovariance Func-
tion

From some points of view, the "Box-Jenkins/ARMA" enterprise is somewhat
dissatisfying. One is essentially mapping sets of parameters φ,θ, and σ2 to
autocovariance functions, trying to find sets of parameters that reproduce an
observed/estimated form. But the link between the parameters and the char-
acter of autocovariance functions is less than completely transparent. (For one
thing, even the process variance γ (0) fails to be related to the parameters in a
simple fashion!) That at least suggests the possibility of taking a more direct
approach to modeling the autocovariance function. There is nothing about the
ARMA structure that makes it necessary for (or even particularly suited to)
the additional differencing and regression elements of standard times series and
forecasting methods. If one could identify a form for and estimate parameters of
γ (s) directly, all of the differencing, regression, forecasting, and model checking
material discussed thus far would remain in force. (Of course, the real impedi-
ment to application here is the need for appropriate software to implement more
direct analysis of time series dependence structures.)
Here we outline what could at least in theory be done in general, and is

surely practically feasible "from scratch" in small problems if an analyst is at
all effective at statistical computing (e.g. in R). It begins with the construct of
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an autocorrelation function for a stochastic process in continuous (rather than
discrete) time.
Basically any symmetric non-negative definite real-valued function of a single

real variable, say f (t), can serve as an autocovariance function for a stochastic
process of a continuous variable t. When such a function is divided by its value
at 0 (forming φ (t) = f (t) /f (0)) a valid autocorrelation function for a stochastic
process of the continuous variable t is formed. People in spatial statistics have
identified a number of convenient forms φ (and further noted that one rich source
of such functions consists of real-valued characteristic functions associated with
distributions on < that are symmetric about 0). So (coming from a variety
of sources) Table 1 provides an example set of basic autocorrelation functions
for stochastic process of a real variable, t. Any one of these function φ may
be rescaled (in time) by replacing its argument t with ct for a positive constant
(parameter) c. And we then note that when evaluated at only integer values s,
these functions of real t serve as autocorrelation functions for time series.
Next we observe that the product of two or more autocorrelation functions is

again an autocorrelation function and that (weighted) averages of two or more
autocorrelation functions are again autocorrelation functions. Finally, we can
be reminded that we know the simple forms for white noise and AR(1) auto-
correlation functions. All this ultimately means that we have at our disposal a
wide variety of basic autocorrelation function forms φ (cs) using entries of Table
1 plus the (1-parameter) AR(1) form (that can take 2 basic shapes, exponen-
tially declining and possibly oscillating) and the white noise form that can be
multiplied or averaged together (introducing weights and time scalings, c, as
parameters) to produce new parametric families of autocorrelation functions.
It then seems entirely possible to build a form matching the general shape of a
typical sample autocorrelation function ρ̂n (s) at small to moderate lags. Then
all parameters of the correlation function (any c’s, and any AR(1) lag 1 cor-
relation, and any weights) plus (an interpretable) variance γ (0) can become
parameters of a covariance matrix for Y n to be estimated by (for example)
Gaussian maximum likelihood.
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Table 1: Some Basic Autocorrelation Functions

φ (t) Origin/Source

cos |t| Chf of distribution with mass 1
2 at each of ±1

sin |t|
|t| Chf of U(−1, 1) distribution

sin2 |t|
t2

Chf of triangular distribution on (−2, 2)

e−t
2

Chf of N(0, 2) distribution

e−|t| Chf standard Cauchy distribution

e−|t|
ν

(for a 0 < ν ≤ 2)

1

1 + t2
Chf of symmetrized Exp(1) distribution

1

(1 + t2)
β
(for a β > 0) spatial statistics

(1 + |t|) e−|t| spatial statistics(
1 + |t|+ t2

3

)
e−|t| spatial statistics

(1− |t|)+

(1− |t|)3
+ (3 |t|+ 1)
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9 Spectral Analysis of Second Order Stationary
Time Series

This material is about decomposing second order stationary series and their
correlation/covariance structures into periodic components. As usual, we sup-
pose throughout that Y is second order stationary with autocovariance function
γ (s).

9.1 Spectral Distributions

To begin, suppose that γ (s) is absolutely summable, that is

∞∑
h=−∞

|γ (h)| <∞ (46)

In this case the (apparently complex-valued) function of the real variable λ,

f (λ) =
1

2π

∞∑
h=−∞

e−ihλγ (h) (47)

is well-defined and is called the "spectral density" for Y . In fact (remem-
bering that for θ real, eiθ = cos θ+ i sin θ and that γ (−h) = γ (h)) this function
is real-valued, and

f (λ) =
1

2π

∞∑
h=−∞

γ (h) cos (λh) (48)

The fact that cos θ is an even function implies that f (−λ) = f (λ). Since cos θ
has period 2π, f (λ) is periodic with period 2π/k for an integer k ≥ 1, and it
suffi ces to consider f (λ) as defined on [−π, π]. Further, there is a technical
argument in BDM that shows that f (λ) ≥ 0, to some degree justifying the
"density" terminology.
What is most interesting is that the autocovariances can be recovered from

the spectral density. To see this, write∫ π

−π
eikλf (λ) dλ =

∫ π

−π
eikλ

(
1

2π

∞∑
h=−∞

e−ihλγ (h)

)
dλ

=
1

2π

∞∑
h=−∞

γ (h)

∫ π

−π
ei(k−h)λdλ

=
1

2π

∞∑
h=−∞

γ (h)

∫ π

−π
cos ((k − h)λ) dλ

= γ (k)

Now to this point all of this has been developed under the assumption (46)
that the autocovariance function is absolutely summable. We can define spec-
tral densities for some cases where this restriction is not met, by simply saying
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that if there is an even real function f (λ) ≥ 0 for −π ≤ λ ≤ π with

γ (h) =

∫ π

−π
eihλf (λ) dλ =

∫ π

−π
cos (hλ) f (λ) dλ (49)

then we’ll call f (λ) the spectral density for the process.
A reasonable question is: "What functions can serve as spectral densities?"

Proposition 4.1.1 of BDM says that a non-negative real-valued function f (λ)
on [−π, π] is the spectral density for a second order stationary process if and
only if f (−λ) = f (λ) and ∫ π

−π
f (λ) dλ <∞

Notice that this latter means that

g (λ) =
f (λ)∫ π

−π f (λ) dλ

is the pdf of a continuos distribution on [−π, π] that is symmetric about 0.
Then observe that when f (λ) is a spectral density, the relationship (49) can

be thought of in terms involving expected values. That is, with

σ2 = γ (0) = Varyt =

∫ π

−π
f (λ) dλ

and g (λ) = f (λ) /σ2 the pdf on [−π, π] derived from f (λ), for W ∼ g, the
relationship (49) is

γ (h) = σ2EeihW = σ2E cos (hW ) (50)

(So, incidentally, ρ (h) =EeihW =Ecos (hW ) and the lag h autocorrelation is
the g mean of cos (hW ).)
Now, not all autocovariance functions for second order stationary processes

have spectral densities. But it is always possible to provide a representation
of the form (50). That is, a version of the BDM Theorem 4.1.1 says that
γ (h) is an autocovariance function for a second order stationary process if and
only if there is a symmetric probability distribution G on [−π, π] such that for
W ∼ G the relationship (50) holds. The (generalized, since its total mass is
σ2, that is potentially different from 1) distribution σ2G is called the spectral
distribution for the process. Where G is continuous, the spectral distribution
has the spectral density g. But it’s also perfectly possible for G to be discrete
(or neither continuous nor discrete).
The spectral distribution of a process not only provides a theoretical tool

for reconstructing the autocovariance function, it is typically interpreted as giv-
ing insight into how "rough" realizations of a time series are likely to be, and
how those realizations might be thought of as made from periodic (sinusoidal)
components. Rationale for this thinking can be developed through a series of
examples.
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Consider first the case of "random sinusoids." That is, consider a second
order stationary process defined by

yt =

k∑
j=1

(Aj cos (ωjt) +Bj sin (ωjt)) (51)

for some set of frequencies 0 < ω1 < ω2 < · · · < ωk < π, and uncorrelated mean
0 random variables A1, . . . , Ak, B1, . . . , Bk where VarAj =VarBj = σ2

j . It’s a
trigonometric fact that

Aj cos (ωjt) +Bj sin (ωjt) =
√
A2
j +B2

j sin
(
ωjt+ φj

)
for φj ∈ (−π, π] the unique angle satisfying sin

(
φj
)

= Aj/
√
A2
j +B2

j and

cos
(
φj
)

= Bj/
√
A2
j +B2

j . So the form (51) is a sum of sine functions with ran-

dom weights
√
A2
j +B2

j , fixed frequencies ωj , and random phase shifts/offsets

φj . In general, a large σ
2
j will produce a large amplitude

√
A2
j +B2

j or weight

on the sinusoid of frequency ωj .
Then, as it turns out, the process (51) has autocovariance function

γ (h) =

k∑
j=1

σ2
j cos (ωjh)

so that σ2 = γ (0) =
∑k
j=1 σ

2
j . But notice that for a discrete random variable

W with

P [W = ωj ] = P [W = −ωj ] =
1

2

(
σ2
j

σ2

)
it is the case that

EeihW = E cos (hW ) =

k∑
j=1

(
σ2
j

σ2

)
cos (ωjh)

so that γ (h) = σ2EeihW and the generalized distribution that is σ2 times
the probability distribution of W is the (discrete) spectral distribution of the
process. This spectral distribution places large mass on those frequencies for
which realizations of the process will tend to have corresponding large sinusoidal
components. In particular, in cases where large frequencies have large associ-
ated masses, one can expect realizations of the process to be "rough" and have
fast local variation.
As a second example of a spectral distribution, consider the spectral density

f (λ) =
σ2

2π
for λ ∈ [−π, π]
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This prescribes a "flat" spectral distribution/a flat spectrum. Here, for h 6= 0

γ (h) =
σ2

2π

∫ π

−π
cos (hλ) dλ = 0

and we see that this is the white noise spectral density. (Analogy to physics,
where white light is electromagnetic radiation that has constant intensities of
components at all wavelengths/frequencies, thus provides motivation for the
"white noise" name.) This spectral distribution produces extremely rough
realizations for Y , spreading appreciable mass across large frequencies.
AR(1) and MA(1) processes have fairly simple and illuminating spectral

densities. In the first case (where in this section the white noise variance will
be denoted by η2 thereby reserving the notation σ2 for the variance of yt) for
λ ∈ [−π, π]

f (λ) =
1

2π

∞∑
h=−∞

φ|h|
(

η2

1− φ2

)
cos (λh)

=
η2

2π
(
1− 2φ cos (λ) + φ2

)
It’s easy to verify that for φ near 1, this density puts small mass at large fre-
quencies and AR(1) realizations are relatively smooth, while for φ near −1 the
density puts large mass at large frequencies and AR(1) realizations are relatively
rough, involving "fast random" oscillations.
The MA(1) spectral density is for λ ∈ [−π, π]

f (λ) =
1

2π

1∑
h=−1

γ (h) cos (λh)

=
η2

2π

(
1 + 2θ cos (λ) + θ2

)
It is easy to verify that for θ near 1, this density puts small mass at large
frequencies and MA(1) realizations are relatively smooth, while for θ near −1
the density puts large mass at large frequencies and MA(1) realizations are
relatively rough, again involving "fast random" oscillations.

9.2 Linear Filters and Spectral Densities

Suppose that L =
∑∞
t=−∞ ψtBt is a time-invariant linear filter with absolutely

summable coeffi cients (i.e. with
∑∞
t=−∞ |ψt| < ∞). Proposition 1 on page 16

says how the autocovariance function for LY is related to that of Y . In the
event that Y has a spectral density, it is possible to also provide a very simple
formula for the spectral density of LY . A small amount of new notation must
be prepared in order to present this.

76



Corresponding to L define the (complex-valued) function of λ ∈ [−π, π]

TL (λ) =

∞∑
t=−∞

ψte
−itλ =

∞∑
t=−∞

ψt (cos (−tλ) + i sin (−tλ)) =

∞∑
t=−∞

ψt (cos (tλ)− i sin (tλ))

This is sometimes called the "transfer function" of the linear filter L. Related
to this is the (real non-negative) so-called power transfer function of the
linear filter

|TL (λ)|2 =

( ∞∑
t=−∞

ψt cos (tλ)

)2

+

( ∞∑
t=−∞

ψt sin (tλ)

)2

With this notation, it is possible to show that spectral densities are related by

fLY (λ) = |TL (λ)|2 fY (λ) (52)

The relationship (52) has several interesting immediate consequences. For
example, consider the seasonal (lag s) difference operator, Ds. This has only
two non-zero coeffi cients, ψ0 = 1 and ψs = −1. So the corresponding transfer
function is

TDs (λ) = 1− e−isλ

Then, for integer k,

TDs

(
k

(
2π

s

))
= 0

so that for integer k

fDsY

(
k

(
2π

s

))
=

∣∣∣∣TDs (k(2π

s

))∣∣∣∣2 fY (k(2π

s

))
= 0

One might interpret this to mean that DsY has no sinusoidal components with
periods that are divisors of s. The seasonal differencing in some sense removes
from the distribution of Y periodic patterns that complete some number of
full cycles in exactly s time periods. This is is completely consistent with the
standard data-analytic motivation of seasonal differencing.
As a second important application of relationship (52) consider finding the

spectral density for a general ARMA process. Suppose that

Φ (B)Y = Θ (B) ε

Then the spectral density for Φ (B)Y is

fΦ(B)Y (λ) =
∣∣TΦ(B) (λ)

∣∣2 fY (λ)

and the spectral density for Θ (B) ε is

fΘ(B)ε (λ) =
∣∣TΘ(B) (λ)

∣∣2 fε (λ)

=
∣∣TΘ(B) (λ)

∣∣2(σ2

2π

)
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Equating these two spectral densities and solving for fY (λ) we then have

fY (λ) =
σ2

2π

(∣∣TΘ(B) (λ)
∣∣2∣∣TΦ(B) (λ)
∣∣2
)

9.3 Estimating a Spectral Density

If one assumes that Y has a spectral density, a natural question is how one might
estimate it based on Y n. The basic tool typically used in such estimation is
the so-called "periodogram" of Y n. This is the function defined on [−π, π]
by

In (λ) =
1

n

∣∣∣∣∣
n∑
t=1

yte
−itλ

∣∣∣∣∣
2

=
1

n

∣∣∣∣∣
n∑
t=1

yt (cos (tλ)− i sin (tλ))

∣∣∣∣∣
2

The periodogram turns out to be a first empirical approximation of 2πf (λ).
This can be motivated by Proposition 4.2.1 of BDM. This result says that for
any ω ∈ (−π, π] of the form ω = 2πk/n for k a non-zero integer (a so-called
Fourier frequency),

In (ω) =
∑
|h|<n

γ̂n (h) e−ihω =
∑
|h|<n

γ̂n (h) cos (hω) (53)

Recalling the opening definitions of a spectral density (47) and (48), the rela-
tionship (53) for Fourier frequencies then suggests that In (λ) might in general
approximate 2πf (λ). But as it turns out, it is necessary to modify the peri-
odogram by smoothing in order to produce a consistent estimator of the function
2πf (λ).
Form (n) an integer (that typically grows with n), a non-negative symmetric

weight function wn (j) on the integers (that can depend upon n) with

m(n)∑
j=−m(n)

wn (j) = 1

and function of λ ∈ (−π, π]

g (n, λ) = the multiple of 2π/n closest to λ

an estimator of f (λ) based on a smoothed periodogram is

f̃ (λ) =
1

2π

∑
|j|≤m(n)

wn (j) In

(
g (n, λ) +

2πj

n

)
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(where relationship (53) could be used to find the values of In at Fourier fre-
quencies that are needed here). In practice, the form of weights wn (j) used is
chosen to smooth In, but to not smooth it "too much."
Various choices of neighborhood size m (n) and weights wn (j) lead to con-

sistency results for the estimator f̃ (λ). One example is the choice

m (n) = the greatest integer in
√
n

and
wj (n) =

1

2m (n) + 1

For this choice, f̃ (λ) is essentially 1/2π times an arithmetic average of In eval-
uated at the roughly 2

√
n+ 1 Fourier frequencies closest to λ.

10 State Space Models

So-called state space formulations of time series models and corresponding
Kalman recursions provide a flexible and effective general methodology for mod-
eling and analysis. They provide 1) a unified treatment of many standard
models, 2) recursive prediction, filtering, and smoothing, 3) recursive likelihood
calculations, 4) natural handling of missing values, and 5) direct generalization
to non-Gaussian and non-linear models. BDM provides a description of these
in its Chapter 8, and what follows here is a combination of a retelling of the
BDM development and some class notes of Ken Ryan whose origin is probably
in an ISU course of Jay Breidt.

10.1 Basic State Space Representations

Here we are going to abandon/modify some of the multivariate time series no-
tation we used in Section 6. It doesn’t seem particularly helpful in the present
context to make much use of operator notation, <∞ vectors, or∞×m represen-
tations of m-variate time series. We will want to be able to index multivariate
observations by time and will most naturally prefer to write them for fixed time
t as column vectors (rather than as row vectors as we did before). So here,
unless specifically indicated to the contrary, vectors are column vectors. For
example, yt will be a column vector of observations at time t (in contrast to the
convention we used earlier that would make it a row vector).
The basic sate space formulation operates on two interrelated sets of recur-

sions, the first for a system "state" and the second for a corresponding "ob-
servation." (Most simply, one conceives of a stochastic evolution of the state
and a clouded/noisy perception of it.) We’ll write the state (or transition)
equation/recursion as

xt+1
v×1

= F t
v×v

xt
v×1

+ vt
v×1

(54)
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and the observation (or measurement) equation/recursion as

yt
w×1

= Gt
w×v

xt
v×1

+ wt
w×1

(55)

for (at least for the time being, non-random) matrices F t and Gt, and mean 0
random vectors vt and wt. We will assume that the error vectors(

vt
wt

)
are uncorrelated with each other and (where only time t > 0 is considered) with
the initial state, x1. The fixed t covariance matrix for the errors will be written
as

E
(
vt
wt

)
(v′t,w

′
t) =

 Qt
v×v

St
v×w

S′t
w×v

Rt
w×w


and F t,Gt,Qt,Rt and St are system matrices. In the event they don’t change
with t, the system is "time-invariant." This structure covers a wide variety of
both second order stationary and other models for the observable yt.
A simple (perhaps the archetypal) example of this formalism is the "random

walk plus noise." Let
xt+1 = xt + vt

for {vt} a univariate mean 0 variance σ2
v white noise sequence and

yt = xt + wt

for {wt} a univariate mean 0 variance σ2
w white noise sequence uncorrelated

with the v sequence. This model is of state space form (54) and (55) with
Ft = 1, Gt = 1, Qt = σ2

v, Rt = σ2
w, and St = 0.

A slight generalization of the example of cointegration in Section 6.3.4 can be
formulated as a second example of the state space structure. That is, for {vt}
and {wt} uncorrelated univariate mean 0 white noise sequences with respective
variances σ2

v and σ
2
w, let

dt+1 = dt + vt and

pt = γdt + wt

let

yt =

(
dt
pt

)
Then {yt} is integrated of order 1. To see this, note that while the random walk
{dt} is not second order stationary (so that {yt} is not second order stationary),

yt−yt−1 =

(
dt − dt−1

pt − pt−1

)
=

(
vt−1

γ (dt − dt−1) + wt − wt−1

)
=

(
vt−1

γvt−1 + wt − wt−1

)
has entries that are second order stationary.
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In state space form we can write

yt =

(
1
γ

)
dt +

(
0
wt

)
and with xt = dt

xt+1 = 1xt + vt

This is the case of the state space from (54) and (55) with Ft = 1,Gt =
(1, γ)

′
,wt = (0, wt) , Qt = σ2

v,St = (0, 0) , and

Rt =

(
0 0
0 σ2

w

)
And to complete the "cointegration" story for this example, note that (−γ, 1)
is a cointegration vector since

(−γ, 1)yt = −γdt + pt = wt

and the w sequence is second order stationary.
As it turns out, causal invertible ARMA models can be realized as the distri-

butions of yt in state space models. In this preliminary look at the state space
formulation, consider the simple AR(2), MA(1), and ARMA(1, 1) instances of
this truth. First, consider an AR(2) model specified in difference equation form
as

xt+1 = φ1xt + φ2xt−1 + εt+1

For

xt =

(
xt
xt−1

)
,F t =

(
φ1 φ2

0 0

)
, and vt =

(
εt+1

0

)
state equation (54) and the instance of observation equation (55) with Gt =
(1, 0) and wt with variance 0 produces a state space representation of the AR(2)
model for yt = xt with

Qt =

(
σ2
v 0

0 0

)
St = (0, 0)

′
, and Rt = 0. (Note that this extends in obvious fashion to AR(p)

cases using p-dimensional state vectors consisting of p lags of y’s.)
To produce a state space representation of an MA(1) model, consider a 2-

dimensional state vector

xt =

(
xt,1
xt,2

)
and a state equation

xt+1 =

(
0 1
0 0

)
xt +

(
εt+1

θεt+1

)
which is clearly the version of equation (54) with

F t =

(
0 1
0 0

)
, and vt =

(
εt+1

θεt+1

)
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Then Gt = (1, 0) and wt with variance 0 produces a state space representation
of the MA(1) model for yt = (1, 0)xt = xt,1 + εt = xt−1,2 + εt = θεt−1 +
εt. (A similar argument could be mounted for the MA(q) case using (q + 1)-
dimensional state vectors.)
Then, to cover the ARMA(1, 1) possibility expressed in difference equation

form as
yt = φyt−1 + θεt−1 + εt

suppose that {xt} is a univariate causal AR(1) process satisfying the operator
equation

(I − φB)x = ε

for 0 mean white noise ε. We may then use

xt =

(
xt−1

xt

)
,F t =

(
0 1
0 φ

)
, and vt =

(
0
εt+1

)
in the state equation (54) and Gt = (θ, 1) and wt with variance 0 in the obser-
vation equation (55), producing a model for the observable satisfying

yt = θxt−1 + xt

= θ

∞∑
j=0

φjεt−1−j +

∞∑
j=0

φjεt−j

= θεt−1 + θ

∞∑
j=1

φjεt−1−j +

∞∑
j=1

φjεt−j + εt

= φ

θ ∞∑
j=1

φj−1εt−1−j +

∞∑
j=1

φj−1εt−j

+ θεt−1 + εt

= φ

θ ∞∑
j=0

φjεt−2−j +

∞∑
j=0

φjεt−1−j

+ θεt−1 + εt

= φyt−1 + θεt−1 + εt

10.2 "Structural" Models

It is possible to use state space models to produce solid probabilistic formulations
of the heuristic classical decompositions and Holt-Winters thinking discussed in
Section 7. These are often known as "structural models" for time series and
are discussed here.
To begin, consider the conceptual decomposition (42)

yt = mt + st + nt

where mt represents an approximate "local level," st represents a seasonal effect
(any consecutive d of which sum to roughly 0), and nt represents small "noise."
For simplicity of exposition, let’s here consider the case of quarterly data, i.e.
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the case of d = 4. A way of letting both the local level and the form of
seasonal effects evolve across time is to employ a state space model related to
this decomposition. To this end, let

xt =


mt

st
st−1

st−2

 , F t =


1 0 0 0
0 −1 −1 −1
0 1 0 1
0 0 1 0

 , and vt =


vmt
vst
0
0


for (mean 0 variance σ2

m and σ2
s) uncorrelated white noise sequences {vmt } and

{vst } and consider the model with state equation (54) and observation equation

yt = (1, 1, 0, 0)xt + nt

for a (mean 0 variance σ2
n) white noise sequence {nt} uncorrelated with the state

equation errors. Then with Gt = (1, 1, 0, 0) and wt = nt this is of state space
form (55) and the natural covariance matrix for (v′t, wt)

′ is diag
(
σ2
m, σ

2
s, 0, 0, σ

2
n

)
.

A generalization of this development is one where the effect of a "local slope"
is added to the local level producing the representation

yt = mt + bt · 1 + st + nt

(This thinking is much like that leading to seasonal Holt-Winters forecasting.)
Let

xt =


mt

bt
st
st−1

st−2

 , F t =


1 1 0 0 0
0 1 0 0 0
0 0 −1 −1 −1
0 0 1 0 1
0 0 0 1 0

 , and vt =


vmt
vbt
vst
0
0


for uncorrelated (mean 0 variance σ2

m, σ
2
b , σ

2
s) white noise sequences {vmt } ,

{
vbt
}
,

and {vst } and consider the model with state equation (54) and observation equa-
tion

yt = (1, 1, 1, 0, 0)xt + nt

for a (mean 0 variance σ2
n) white noise sequence {nt} uncorrelated with the

state equation errors. Then with Gt = (1, 1, 1, 0, 0) and wt = nt this is
of state space form (55) and the natural covariance matrix for (v′t, wt)

′ is
diag

(
σ2
m, σ

2
b , σ

2
s, 0, 0, σ

2
n

)
.

10.3 The Kalman Recursions

The computational basis of application of state space models is a set of recursions
for conditional means and variances (that ultimately come from assuming that
all xt and yt are jointly Gaussian). Assume that for all t, St = 0. In what
follows, we’ll write xt|n for the conditional mean of xt given all y1,y2, . . . ,yn
and x̂t+1 for xt+1|t.
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The start-up of the Kalman computations requires a (prior) distribution
for x1. Let x̂1 be the mean of that distribution and Ω1 be the covariance
matrix for that distribution. Beginning with those values, for t = 1, 2, . . . , n
there are then

• Innovation Recursions

It = yt −Gtx̂t and

∆t = GtΩtG
′
t +Rt

(for the innovations and their covariance matrices),

• Update/Filter Recursions

xt|t = x̂t + ΩtG
′
t∆
−
t It and

Ωt|t = Ωt −ΩtG
′
t∆
−
t GtΩt

(where ∆−t is any generalized inverse of ∆t, the recursions giving the
conditional means of states and their error covariance matrices Ωt|t =

E
(
xt − xt|t

) (
xt − xt|t

)′
), and

• Prediction Recursions

x̂t+1 = F txt|t and

Ωt+1 = F tΩt|tF
′
t +Qt

(for one-step-ahead predictions of states and their error covariance matri-
ces Ωt =E(xt − x̂t) (xt − x̂t)′).

It is possible to cycle through these recursions in the order above for a given t and
produce innovations, updates, and predictions (and their associated covariance
matrices) for all of t = 1, 2, . . . , n.
As a completely unrealistic but correspondingly simple illustration of the

Kalman calculations, consider the trivial case of a state space model with state
equation

xt+1 = xt(= µ)

and observation equation
yt = xt + wt

for {wt} a mean 0 variance σ2 white noise sequence. Here Ft = 1, Gt = 1, Qt =
0, and Rt = σ2 (and St = 0). As start-up assumptions, suppose that we
employ a prior mean of x̂1 = µ0 and a prior variance of Ω1 = σ2

0. Then the
t = 1 innovation and variance are

I1 = y1 − 1 · x̂1 = y1 − µ0 and

∆1 = 1 · σ2
0 · 1 + σ2 = σ2

0 + σ2
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Next, the t = 1 Kalman filter update and corresponding error variance are

x1|1 = µ0 + σ2
0 · 1

(
1

σ2
0 + σ2

)
(y1 − µ0) =

σ2µ0 + σ2
0y1

σ2
0 + σ2

and

Ω1|1 = σ2
0 − σ2

0 · 1 ·
(

1

σ2
0 + σ2

)
· 1 · σ2

0 =
σ2

0σ
2

σ2
0 + σ2

And the t = 1 prediction and prediction variance are

x̂2 = 1 · x1|1 =
σ2µ0 + σ2

0y1

σ2
0 + σ2

and

Ω2 = 1 · Ω1|1 · 1 + 0 =
σ2

0σ
2

σ2
0 + σ2

Of course, with t = 1 recursions completed, the t = 2 cycle can begin with
innovation and variance

I2 = y2 − 1 · x1|1 = y2 −
σ2µ0 + σ2

0y1

σ2
0 + σ2

and

∆2 = 1 · σ2
0σ

2

σ2
0 + σ2

· 1 + σ2 =
σ2

0σ
2

σ2
0 + σ2

+ σ2

and so on.

10.4 Implications and Extensions of the Kalman Recur-
sions

There are important direct consequences of the basic Kalman recursions just
presented.

10.4.1 Likelihood-Based Inference

Under an assumption of joint normality for all xt and yt, (and continuing to
assume that all St = 0) the natural log of the joint pdf of the observables (the
yt’s) is (for Λ a vector of parameters in the matrices F t,Gt,Qt, and Rt) of the
form

ln f (y1, . . . ,yn|Λ) = −nw
2

ln (2π)− 1

2

n∑
t=1

ln det ∆t −
1

2

n∑
t=1

I ′t∆
−
t It

For fixedΛ this depends only on the innovations and the corresponding variances
that can be computed from the Kalman recursions. But this Gaussian log-
likelihood (function of Λ ) then translates directly to the possibility of maximum
likelihood estimation of Λ, and an estimated covariance matrix corresponding
to the estimates based on the negative Hessian of this function evaluated at the
MLE. (Of course, all these will typically need to be determined numerically.)
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10.4.2 Filtering and Prediction

After fitting a state space model, one can use it to make predictions and (pre-
diction limits based on them and) prediction covariance matrices. Both x’s
and y’s might be predicted. Consider first prediction of x’s.

Prediction for xn is known as "filtering." It is covered directly by the Kalman
filtering recursions.
One-step-ahead prediction of xn+1 is based directly on the Kalman filtering

and the state equation as
x̂n+1 = F nxn|n

Two-step prediction is based on

xn+2|n = F n+1x̂n+1 = F n+1F nxn|n

And in general, s-step prediction is based on

xn+s|n = F n+s−1F n+s−2 · · ·F nxn|n

Prediction variances for these predictors can be obtained recursively. With

Ω(s)
n = E

(
xn+s − xn+s|n

) (
xn+s − xn+s|n

)′
and using the convention Ω(1)

n = Ωn+1, for s ≥ 2 it is the case that

Ω(s)
n = F n+s−1Ω

(s−1)
n F ′n+s−1 +Qn+s−1

Consider then prediction of y’s. s-step prediction of yn+s is based on

yn+s|n = Gn+sxn+s|n

This has corresponding error covariance matrix

∆(s)
n = E

(
yn+s − yn+s|n

)(
yn+s − yn+s|n

)′
satisfying

∆(s)
n = Gn+sΩ

(s)
n G

′
n+s +Rn+s

10.4.3 Smoothing

This is prediction of xt from the observations y1,y2, . . . ,yn for n > t, producing
both

xt|n and Ωt|n = E
(
xt − xt|n

) (
xt − xt|n

)′
BDM argues that these can be computed recursively, beginning with

xt|t−1 = x̂t and Ωt,t = Ωt|t−1 = Ωt
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(from the Kalman prediction/filtering recursions). Then for n = t, t+1, t+2, . . .

Ωt,n+1 = Ωt,n

(
F n − F nΩnG

′
n∆−nGn

)′
Ωt|n = Ωt|n−1 −Ωt,nG

′
n∆−nGnΩ′t,n

xt|n = xt|n−1 + Ωt,nG
′
n∆−n (yn −Gnx̂n)

An alternative (of course equivalent) and perhaps more appealing way to do
the computation is to begin with xn|n and Ωn|n from the Kalman recursions
and for t = n− 1, n− 2, . . . , 1 to compute

Ω∗t = Ωt|tF
′
tΩ
−1
t+1

and
xt|n = xt|t + Ω∗t

(
xt+1|n − x̂t+1

)
and

Ωt|n = Ωt|t + Ω∗t
(
Ωt+1|n −Ωt+1

)
Ω∗′t

10.4.4 Missing Observations

Suppose that one has available observations y1,y2, . . . ,ym−1,ym+1 (but not
ym). It is still possible to make use of a version of the Kalman recursions.
Note that at there is no problem in using the recursions through time t = m−1,
producing

xm−1|m−1 and Ωm−1|m−1

from the filtering recursion and

x̂m and Ωm

from the prediction recursion. Then at time t = m since ym is missing, no inno-
vation Im can be computed. So for filtering, the usual Kalman update equation
cannot be used. But (under Gaussian assumptions) one should presumably set

xm|m = E
[
xm|y1,y2, . . . ,ym−1

]
= x̂m

and
Ωm|m = Ωm

(both from the t = m − 1 prediction recursion). Then for prediction, one can
go ahead using

x̂m = Fmxm|m

and
Ωm+1 = FmΩm|mF

′
m +Qm

With these values, one is back on schedule to continue using the Kalman recur-
sions beginning at t = m+ 1.
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10.5 Approximately Linear State Space Modeling

A generalization of the basic state space model form replaces the linear form
F txt in the state equation (54) with

f t (xt) =


ft,1 (xt)
ft,2 (xt)

...
ft,v (xt)


for some f t : <v → <v and the linear form Gtx in the observation equation
(55) with

gt (xt) =


gt,1 (xt)
gt,2 (xt)

...
gt,w (xt)


for some gt : <v → <w. In the event that the f t and gt are differentiable
functions and the state and observation error covariance matrices are relatively
small (in comparison to any non-linearity in the corresponding functions), one
can essentially "linearize" the model equations and use close variants of the
basic Kalman equations.
That is, for

ḟ t (x0) =



∂
∂x1

ft,1

∣∣∣
x=x0

∂
∂x2

ft,1

∣∣∣
x=x0

· · · ∂
∂xv

ft,1

∣∣∣
x=x0

∂
∂x1

ft,2

∣∣∣
x=x0

∂
∂x2

ft,2

∣∣∣
x=x0

· · · ∂
∂xv

ft,2

∣∣∣
x=x0

...
...

. . .
...

∂
∂x1

ft,v

∣∣∣
x=x0

∂
∂x2

ft,v

∣∣∣
x=x0

· · · ∂
∂xv

ft,v

∣∣∣
x=x0


and

ġt (x0) =



∂
∂x1

gt,1

∣∣∣
x=x0

∂
∂x2

gt,1

∣∣∣
x=x0

· · · ∂
∂xv

gt,1

∣∣∣
x=x0

∂
∂x1

gt,2

∣∣∣
x=x0

∂
∂x2

gt,2

∣∣∣
x=x0

· · · ∂
∂xv

gt,2

∣∣∣
x=x0

...
...

. . .
...

∂
∂x1

gt,w

∣∣∣
x=x0

∂
∂x2

gt,w

∣∣∣
x=x0

· · · ∂
∂xv

gt,w

∣∣∣
x=x0


the nonlinear state equation

xt+1 = f t (xt) + vt

and nonlinear observation equation

yt = gt (xt) +wt
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can be approximated by respectively

xt+1 ≈ f t
(
xt|t
)

+ ḟ t
(
xt|t
) (
xt − xt|t

)
+ vt

= ḟ t
(
xt|t
)
xt +

(
f t
(
xt|t
)
− ḟ t

(
xt|t
)
xt|t

)
+ vt

and

yt ≈ gt
(
xt|t
)

+ ġt
(
xt|t
) (
xt − xt|t

)
+wt

= ġt
(
xt|t
)
xt +

(
gt
(
xt|t
)
− ġt

(
xt|t
)
xt|t
)

+wt

These approximate model equations lead to extended Kalman recursions.
Below use the abbreviations

F̂ t = ḟ t
(
xt|t
)
and Ĝt = ġt

(
xt|t
)

Then there are

• (Approximate) Innovation Recursions

It = yt − gt (x̂t) and

∆t = ĜtΩtĜ
′
t +Rt

• (Approximate) Update/Filter Recursions

xt|t = x̂t + ΩtĜ
′
t∆
−
t It and

Ωt|t = Ωt −ΩtĜ
′
t∆
−
t ĜtΩt

(where ∆−t is any generalized inverse of ∆t), and

• (Approximate) Prediction Recursions

x̂t+1 = f t
(
xt|t
)

and

Ωt+1 = F̂ tΩt|tF̂
′
t +Qt

10.6 Generalized State Space Modeling, Hidden Markov
Models, and Modern Bayesian Computation

One may abstract the basic structure that under Gaussian assumptions leads to
the Kalman recursions. The resulting general structure, while not typically pro-
ducing simple closed form prediction equations, nevertheless is easily handled
with modern Bayesian computation software. This fact opens the possibility of
quite general filtering methods. In particular, methods for time series of (not
continuous but rather) discrete observations become more or less obvious. We
develop these points more fully below.
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Consider states and observables

x1,x2, . . . ,xn

y1,y2, . . . ,yn

and adopt the notation

xt = (x1,x2, . . . ,xt) and

yt = (y1,y2, . . . ,yt)

If we consider the Gaussian version of the state space model, taken together
with the initialization the state and model equations provide a fully-specified
Gaussian joint distribution for the states and observables. This is built up
conditionally using in succession the distributions

x1 ∼ MVNv (x̂1,Ω1)

y1|x1 ∼ MVNw (G1x1,R1)

x2|x1,y1 ∼ MVNv (F 1x1,Q1)

y2|x2,y1 ∼ MVNw (G2x2,R2)

...

xt|xt−1,yt−1 ∼ MVNv
(
F t−1xt−1,Qt−1

)
yt|xt,yt−1 ∼ MVNw (Gtxt,Rt)

...

xn|xn−1,yn−1 ∼ MVNv
(
F n−1xn−1,Qn−1

)
yn|xn,yn−1 ∼ MVNw (Gnxn,Rn)

Thus, for h a joint density for states and observables, f the MVNv density, and
g the MVNw density,

h (xn,yn) = f (x1|x̂1,Ω)

n∏
t=2

f
(
xt|F t−1xt−1,Qt−1

) n∏
t=1

g (yt|Gtxt,Rt) (56)

This is an n (v + w)-dimensional Gaussian density and the Kalman recursions
provide simple recursive ways of finding conditional means and conditional vari-
ances for the joint distribution. We should not expect to find such simple
closed form expressions once we leave the world of Gaussian models, but the
basic structure (56) does turn out to be simple enough to be handled using
modern (MCMC-based) Bayes analysis software.
Since the prior mean and covariance matrix and all of the matrices in the

Kalman recursions are user-supplied, the elements of the right side of display
(56) are really of the forms

f (x1|x̂1,Ω) = f1 (x1)

f
(
xt|F t−1xt−1,Qt−1

)
= ft (xt|xt−1) and

g (yt|Gtxt,Rt) = gt (yt|xt)
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for a particular (user-supplied) density f1 and user supplied conditional densities
ft and gt. Using these notations, a joint probability structure motivated by the
Gaussian version of the state space model has density

h (xn,yn) =

[
f1 (x1)

n∏
t=2

ft (xt|xt−1)

]
n∏
t=1

gt (yt|xt) (57)

the bracketed part of which specifies a Markov chain model for the states. Con-
ditioned on the states, the observations are independent, yt with a distribution
depending upon xn only through xt. As one only sees states through obser-
vations, form (57) can appropriately be called a "hidden Markov model" or
"generalized state space model."
Now, again, form (57) will in general not provide simple closed forms for

the conditional distributions of observations of x’s and y’s that provide filters
and predictions. But that is more or less irrelevant in the modern computing
environment. Form (57) is easily programmed into modern Bayes software,
and for y∗ any subset of yn, MCMC-based simulations then provide (poste-
rior) conditional distributions for all of the entries of xn and of yn − y∗ (any
unobserved/missing "observables"). This is incredibly powerful.
In fact, even more is possible. The form (57) can be generalized to

h (xn,yn|Λ) =

[
f1 (x1|Λ)

n∏
t=2

ft (xt|xt−1,Λ)

]
n∏
t=1

gt (yt|xt,Λ)

for a vector parameter Λ, and upon providing a distribution for Λ through a
density k (Λ), the "hierarchical" form

k (Λ)h (xn,yn|Λ)

is equally easily entered and used in software like OpenBUGS/WinBUGS, producing
filtered values, predictions and corresponding uncertainties.

10.7 State Space Representations of ARIMA Models

As indicated in Section 10.1, general ARIMA models have state space represen-
tations. We proceed to provide those. The place to begin is with causal AR(p)
models. The standard representation of scalar values from such a process is of
course

yt = φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt

We consider the p-dimensional state variable

xt =


yt−p+1

yt−p+2

...
yt


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and observation equation

yt = (0, 0, . . . , 0, 1)
p×1

xt + 0

An appropriate state equation is then

xt+1 =


0
... I

(p−1)×(p−1)

0
φp φp−1 · · · φ1

xt +


0
...
0
1

 εt+1

and then (with a proper initialization) the AR(p) model has a state space rep-
resentation with

G = (0, 0, . . . , 0, 1) , wt = 0,F =


0
... I

(p−1)×(p−1)

0
φp φp−1 · · · φ1

 , and vt =


0
...
0
εt


(Personally, I would worry little about getting the initialization that makes the
state space representation of Y exactly second order stationary, expecting that
typically any sane initialization would produce about the same forecasts beyond
time n for practical values of n.)

Next, consider the problem of representing a causal ARMA(p, q) process.
Consider the basic ARMA equation in operator form

Φ (B)Y = Θ (B) ε

and let r = max (p, q + 1) so that φj = 0 for j ≥ r, θ0 = 1, and θj = 0 for j ≥ r.
If U is the causal AR(p) process satisfying

Φ (B)U = ε

then
Φ (B)Y = Θ (B) Φ (B)U = Φ (B) Θ (B)U

Φ (B) is invertible and

(Φ (B))
−1

Φ (B)Y = (Φ (B))
−1

Φ (B) Θ (B)U

and thus
Y = Θ (B)U

So for

xt =


ut−r+1

ut−r+2

...
ut


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one can write
yt = (θr−1, θr−2, . . . , θ1, θ0)xt + 0

(an observation equation) where from the AR(p) case, we can write a state
equation as

xt+1 =


0
... I

(r−1)×(r−1)

0
φr φr−1 · · · φ1

xt +


0
...
0
1

 εt+1 (58)

So (with a proper initialization) the ARMA(p, q) model has state space repre-
sentation with

G = (θr−1, θr−2, . . . , θ1, θ0) , wt = 0, (59)

F =


0
... I

(r−1)×(r−1)

0
φr φr−1 · · · φ1

 , and vt =


0
...
0
εt

 (60)

(and again, I personally would not much concern myself with identifying the
initialization that makes the Y model exactly second order stationary).
So then consider developing a state space representation of an ARIMA(p, d, q)

process model. Suppose that Z = DdY is ARMA(p, q), satisfying

Φ (B)Z = Θ (B) ε

Then applying the ARMA development above to Z, we have a state space
representation with observation equation

zt = (θr−1, θr−2, . . . , θ1, θ0)xt + 0

and state equation (58).
Note then that

DdY = (I − B)
d
Y

=

 d∑
j=0

(−1)
j BjId−j

Y
=

d∑
j=0

(−1)
j BjY

so that

Y = DdY −
d∑
j=1

(−1)
j BjY = Z −

d∑
j=1

(−1)
j BjY
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Thus, with

yt =


yt−d+1

yt−d+2

...
yt


and

A
d×1

=


0
...
0
1

 and B
d×d

=


0
... I

(d−1)×(d−1)

0

(−1)
d+1 (d

d

)
(−1)

d ( d
d−1

)
· · · d

 (61)

it is the case that

yt = Azt +Byt−1 = AGxt +Byt−1

for G as in display (59) and A and B as in display (61). So with vt as in display
(60), defining a new state vector and state error

x∗t
(r+d)×1

=

(
xt
yt−1

)
and v∗t

(r+d)×1

=

(
vt
0

)
the new state equation

x∗t+1 =

(
F 0
AG B

)
x∗t + v∗t

(with F as in display (60)) and observation equation

yt =

(
G, (−1)

d+1

(
d

d

)
, (−1)

d

(
d

d− 1

)
, . . . , d

)
x∗t + 0

provide a state space representation of an ARIMA(p, d, q) model with

G∗ =

(
G, (−1)

d+1

(
d

d

)
, (−1)

d

(
d

d− 1

)
, . . . , d

)
, wt = 0, and F ∗ =

(
F 0
AG B

)
(This, of course, is technically subject to using an initialization that makes the
Y process exactly second order stationary. But again, I personally don’t see
this as a serious practical issue.)
Note that in the event that one wishes to represent a "subset ARIMA" model

in state space form, all that is required is to set appropriate φj’s in F and/or
θj’s in G equal to 0.
The whole development just concluded for ARIMA(p, d, q) models has exact

parallels for other cases of differencing of Y . Consider, for a concrete example,
the case where D∗ = DD4 and one wishes to model D∗Y as ARMA(p, q). Since

DD4 = I − B − B4 + B5
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it follows that
Y = D∗Y + BY + B4Y − B5Y

If we then set

yt =


yt−4

yt−3

...
yt

 , A
5×1

=


0
...
0
1

 , and B
5×5

=


0
0
0
0

I
4×4

−1 1 0 0 1


we have as for the ARIMA(p, d, q) case

yt = Azt +Byt−1

and may proceed as before.

11 "Other" Time Series Models

We consider some less standard/less widely used time series models.

11.1 ARCH and GARCH Models for Describing Condi-
tional Heteroscedasticity

For ARIMA models, the conditional variance of yt|yt−1, yt−2, yt−3. . . . is con-
stant (does not depend upon t or the values of past observations). Financial
time series (for example for the log ratios of closing prices of a stock on suc-
cessive trading days) often exhibit what seem to be non-constant conditional
variances. These seem to be big where the immediate past few values of the yt
series are varying wildly and to be small where the immediate past few values are
relatively similar. That is, such series exhibit "volatility clustering." So called
"ARCH" (autoregressive conditionally heteroscedastic) models and "GARCH"
(generalized ARCH) models have been proposed to represent this behavior.

11.1.1 Modeling

For α0 > 0 and 0 < αj < 1 for j = 1, 2, . . . , p use the notation

ht = α0 +

p∑
j=1

αjy
2
t−j (62)

and then for an iid N(0, 1) sequence of variables {εt}, the variables

yt =
√
htεt (63)

are said to have an ARCH(p) joint distribution. It’s easy to argue that under
this model

Var (yt|yt−1, yt−2, yt−3. . . .) = ht
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which is obviously non-constant in the previous observations, having a floor
value of α0 and increasing in the volatility of the (p) immediately preceding
observations. Further, εt is independent of yt−1, yt−2, yt−3. . . ., from which it’s
easy to see that Eyt = 0. In fact, it turns out that Y is strictly (and therefore
second order) stationary. The variance of the process, σ2 =Varyt, may be
derived as

Varyt = EVar (yt|yt−1, yt−2, yt−3. . . .) +Var (E [yt|yt−1, yt−2, yt−3. . . .])

= EVar (yt|yt−1, yt−2, yt−3. . . .) + 0

i.e.

Ey2
t = E

α0 +

p∑
j=1

αjy
2
t−j


so that

σ2 = α0 + σ2

p∑
j=1

αj

and thus
σ2 =

α0

1−
∑p
j=1 αj

(Notice, by the way, that this result indicates the necessity of
∑p
j=1 αj < 1 in

an ARCH model.)
Notice also that if we define

ηt = y2
t − ht

it is the case that
ηt = ε2tht − ht = ht

(
ε2t − 1

)
The series {ηt} then clearly has mean 0 and constant variance. As it turns out,
it is also uncorrelated and is thus a white noise series. So (from the definition
of ηt)

y2
t = ht + ηt

= α0 +

p∑
j=1

αjy
2
t−j + ηt (64)

and we see that
{
y2
t

}
is an AR(p) series.

One way that ARCH models have been generalized is to make GARCH(p, q)
models where one assumes that the basic relationship (63) holds, but the form
(62) is generalized to

ht = α0 +

p∑
j=1

αjy
2
t−j +

q∑
j=1

βjht−j

where α0 > 0 and each αj > 0 for j ≥ 1 and each βj > 0 for j ≥ 1. Here
conditional variances depend upon immediately preceding observations and im-
mediately preceding conditional variances.
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11.1.2 Inference for ARCH Models

In the basic ARCH model,
√
ht is a scaling factor that depends only upon past

y’s in the generation of yt. If we let f (z) be any fixed pdf (including especially
the standard normal pdf, f (z) = φ (z)) and for h > 0 take

f (y|h) =
1√
h
f

(
y√
h

)
to be the scaled version of f (so that Z having density f means that

√
hZ has

density f (·|h)). A version of the ARCH model says that the joint density
for yp+1, yp+2, . . . , yn conditioned on Y p and depending upon the set of ARCH
parameters, α, is

f (yp+1, yp+2, . . . , yn|y1, y2, . . . , yp,α) =

n∏
t=p+1

f (yt|ht)

and for that matter, the joint density for Y n conditioned on (unobservable)
y−p+1, y−p+2, . . . , y0 and depending upon the set of ARCH parameters, α, is

f (y1, y2, . . . , yn|y−p+1, y−p+2, . . . , y0,α) =

n∏
t=1

f (yt|ht)

In both of these expressions dependence upon α enters the right hand side
through the factors, ht, that are variances in the normal case. The generaliza-
tion here beyond the normal case opens the possibility of using "heavy-tailed"
densities f (z) (like t densities), a development that seems to be of some impor-
tance in financial applications of these models.
In any event, one method of inference/estimation in ARCH models is to use

L (α) = ln f (yp+1, yp+2, . . . , yn|y1, y2, . . . , yp,α)

as a conditional log-likelihood. Maximization of L (α) then produces condi-
tional MLE’s for the ARCH parameters, and use of the Hessian matrix eval-
uated at the MLE leads to an estimated covariance matrix for MLE’s of the
individual αj’s and thus standard errors of estimation. Notice that at least as
developed thus far, plugging estimated parameters into the model, point predic-
tions of future observations are all 0, and simulation from existing observables
into the future can provide prediction variances.
An alternative to use of a conditional likelihood might be to employ an ap-

proximate unconditional likelihood produced as follows. In light of the recursion
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(64) let

ŷ2
0 =

1

αp

(
y2
p − α0 − α1y

2
p−1 − α2y

2
p−2 − · · · − αp−1y

2
1

)
ŷ2
−1 =

1

αp

(
y2
p−1 − α0 − α1y

2
p−2 − α2y

2
p−3 − · · · − αp−2y

2
1 − αp−1ŷ2

0

)
ŷ2
−2 =

1

αp

(
y2
p−2 − α0 − α1y

2
p−3 − α2y

2
p−4 − · · · − αp−3y

2
1 − αp−2ŷ2

0 − αp−1ŷ2
−1

)
...

ŷ2
−p+1 =

1

αp

(
y2

1 − α0 − α1ŷ2
0 − α2ŷ2

−1 − · · · − αp−2ŷ2
−p+3 − αp−1ŷ2

−p+2

)
(this amounts to "back-casting" p squared observations based on the AR(p)
model for these squares). Then define for 1 ≤ t ≤ p

ĥt = α0 +

t−1∑
j=1

αjy
2
t−j +

p∑
j=t−1

αj ŷ2
t−j

and in place of the conditional log likelihood one might instead use

L∗ (α) =

p∑
t=1

ln f
(
yt|ĥt

)
+

n∑
t=p+1

ln f (yt|ht)

What strikes me as another more interesting and potentially more effective
method of inference (providing coherent predictions and even handling of miss-
ing values most directly) is to use modern Bayes computing. That is, using the
conditional model for Y n+s provided by f (y1, y2, . . . , yn+s|y−p+1, y−p+2, . . . , y0,α)
and some kind of prior distributions for y−p+1, y−p+2, . . . , y0,α, say specified by
g (y−p+1, y−p+2, . . . , y0,α), one has a joint distribution for all variables specified
by

f (y1, y2, . . . , yn+s|y−p+1, y−p+2, . . . , y0,α) g (y−p+1, y−p+2, . . . , y0,α)

where the first term is very easily coded in software like WinBUGS/OpenBUGS.
Then upon plugging in observed values of some subset of y1, y2, . . . , yn, simu-
lated conditional distributions of the remaining entries of Y n+s, future values
yn+1, yn+2, . . . , yn+s, and parameters in α provide filtering, prediction, and es-
timation in this Bayes model.
What to use for a prior distribution for y−p+1, y−p+2, . . . , y0,α is not com-

pletely obvious, but here is what I might try first. Recognizing that one must
have each αj > 0 and

∑p
j=1 αj < 1 in an ARCH model and (at least in the

normal model) that α0 is a minimal conditional variance, I might try making a
priori

lnα0 ∼ U (−∞,∞)

or perhaps √
α0 ∼ U (0,∞)
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independent of

(α1, α2, . . . αp, γ) ∼ Dirichletp+1

((
1

p+ 1
,

1

p+ 1
, . . .

1

p+ 1

))
(for a variable γ that never really gets used in the model). What should then
get used as a conditional distribution for y−p+1, y−p+2, . . . , y0 given α is not
obvious. One possibility that I might try is this. First, in view of form of the
variance for the ARCH model, one might assume that a priori

y−p+1|α ∼ f
(
y

∣∣∣∣∣ α0

1−
∑p
j=1 αj

)
and then in succession for −p+ 1 < t ≤ 0, that a priori

yt|α, y−p+1, y−p+2, . . . , yt−1 ∼ f

y
∣∣∣∣∣∣α0 +

t+p−1∑
j=1

αjy
2
t−j +

(
α0

1−
∑p
j=1 αj

)
p∑

j=t+p

αj


Another possibility is to simply ignore the dependence in (y−p+1, y−p+2, . . . , y0)
and set

(y−p+1, y−p+2, . . . , y0) |α, γ ∼ MVNp (0, BI)

for a constant B ≥ α0/
(

1−
∑p
j=1 αj

)
.

11.2 S
¯
elf-E

¯
xciting T

¯
hreshold A

¯
uto-R

¯
egressive Models

The basic idea here is that the auto-regressive model that a process follows in
the generation of yt depends upon the immediate past value of the process, yt−1.
For simplicity, we’ll describe a simple two-regime version of the modeling here,
but extension to more than two regimes is more or less obvious/straightforward.
Consider two sets of parameters for AR(p) models

φ01, φ11, . . . , φp1, σ1 and

φ02, φ12, . . . , φp2, σ2

Then for {εt} iid random variables with mean 0 and standard deviation 1,
suppose that

yt =

{
φ01 + φ11yt−1 + · · ·+ φp1yt−p + σ1εt if yt ≤ r
φ02 + φ12yt−1 + · · ·+ φp2yt−p + σ2εt if yt > r

Here both the conditional mean and the conditional standard deviation of
yt|yt−1, yt−2, . . . , yt−p depend upon how the value yt−1 compares to some thresh-
old, r.

For f the marginal density of the errors ε, let

f (y|µ, σ) =
1

σ
f

(
y − µ
σ

)
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Then (suppressing dependence upon φ1, σ1,φ2, σ2, r on the left side of the equa-
tion) the conditional density of yt|Y t−1 is

g (yt|yt−1, yt−2, . . . , yt−p) = I [yt−1 ≤ r] f
(
yt|φ01 + φ11yt−1 + · · ·+ φp1yt−p, σ1

)
+I [yt−1 > r] f

(
yt|φ02 + φ12yt−1 + · · ·+ φp2yt−p, σ2

)
So the conditional density of yp+1, . . . , yn|Y p is

n∏
t=p+1

g (yt|yt−1, yt−2, . . . , yt−p,φ1, σ1,φ2, σ2, r)

where we are now displaying dependence upon φ1, σ1,φ2, σ2, r. This leads to
a conditional log-likelihood

L (φ1, σ1,φ2, σ2, r) =

n∑
t=p+1

ln g (yt|yt−1, yt−2, . . . , yt−p,φ1, σ1,φ2, σ2, r)

that can be used as a basis of inference more or less as for ARCH/GARCH
models. (One point that is worth noticing here is that L is piecewise constant
in r, jumping only at observed values of the elements of yp+1, . . . , yp. The model
is thus not "regular" and some alternative to the simple use of a Hessian matrix
must be employed to find standard errors for the parameter estimates.) Or,
one could treat (unobserved) values y0, y1, . . . , y−p+1 as part of the modeling, set
prior distributions on all of y0, y1, . . . , y−p+1,φ1, σ1,φ2, σ2, r, and use modern
Bayes MCMC software to enable inference. Once one identifies sensible priors,
this approach has the advantages of more or less automatically handling the
non-regularity of the data model, missing values in the series, and prediction
beyond time n.
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