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Abstract

This is an outline for (one version of) Stat 587 at Iowa State University. This basic course
in the analysis of research data is intended for engineering, physical science, and mathematical
sciences graduate students. It has as a real prerequisite an undergraduate course in applied
statistics. (While the course is more or less "self-contained," its pace makes it impossible to
grasp without this background.) It assumes a calculus III mathemtical background.

References in this outline are to Basic Engineering Data Collection and Analysis by Varde-
man and Jobe (V&J), Statistical Methods for Quality Assurance by Vardeman and Jobe (V&J
SMQA), and An Introduction to Statistical Learning by James, Witten, Hastie, and Tibshirani
(JWH&T).
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Part I

Review of Basic Probability and One-, Two-, and r-Sample
Inference

1 Course Introduction and Probability Basics

(Text Reference/Reading: V&J Chapters 1 and 3, Appendix A.1)

Statistics is the study of how best to

• collect data,

• summarize data, and

• draw properly "hedged" conclusions (inferences) from data,

all in a context that recognizes the omnipresence of variability (and "randomness").
Probability is the mathematics intended to describe "chance" (or "randomness"). It is a

worthy subject in its own right (providing important modeling for physical systems that are not
"deterministic"/perfectly predictable). However, for Stat 587 purposes it is primarily a tool used
in statistical analysis. Considerable overhead is involved in providing even the minimal probability
background needed for statistical inference.
Dealing with data in any but the very simplest contexts also requires an appropriate compu-

tational engine. Stat 587 will use the open source R system and the RStudio interface both to
do statistical computations from empirically derived datasets, and to do stochastic/probabilistic
simulations (as a way of handling some probability calculations and of illustrating probability con-
cepts).

Probability is like any other mathematical theory in that one begins with some notation and
axioms and derives implications of these (theorems and the like). We’ll use these implications to
start with "some" probabilities and find others of interest that are consistent with the axioms and
the input probability values.
We start with notation, set theory, and Boolean algebra concepts. Some basic notation for

probability is in Table 1.

Table 1: Probability Notation
Typical Notation Other Notations Meaning
S a sample space/universe/universal set
s ∈ S an outcome/element of S
A ⊂ S an event/set of outcomes of interest
A or B A ∪B the union of events A, B
A and B A ∩B the intersection of events A, B
not A Ac/Ā the complement of the event A
∅ the empty event/empty set
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S can be thought of as a listing of "all things that might happen" in a "chance situation." Two
events with no outcomes in common are called "mutually exclusive" events. In symbols, events A,
B are mutuality exclusive when A and B = ∅ .
The basic axioms of probability (rules of operation of a probability model) concern a function

P (A) that assigns numbers (probabilities) to events. These are

1. 0 ≤ P (A) ≤ 1,

2. P (S) = 1 (and in light of 3. below, P (∅) = 0), and

3. for mutually exclusive events A1, A2, . . .,

P (A1 or A2 or . . .) = P (A1) + P (A2) + · · ·

(probabilities for mutually exclusive events add to make the probability that one of them
occurs).

Probabilities are theoretical values meant to behave like empirical relative frequencies. Any
system of numbers satisfying these axioms specifies a mathematically valid probability model.
Whether that mathematically coherent model is useful or realistic in the physical world is a com-
pletely separate question that can be answered only through comparison of its predictions to em-
pirical reality.
Some simple "theorems" (consequences of the basic axioms) of probability are the following.

Theorem 1 P (not A) = 1− P (A)

Theorem 2 (The "addition rule") P (A or B) = P (A) + P (B)− P (A and B)

Theorem 3 If S is finite and outcomes are equally likely, then

P (A) =
# (A)

# (S)
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2 Conditioning and Independence

(Text Reference/Reading: V&J Appendix A.1)

A basic notion of probability modeling is that of conditional probability. This represents
what is appropriate as an assignment of chance given some partial information that makes a "re-
duced sample space" appropriate.

Definition 4 If B is an event with P (B) > 0, the conditional probability of A given B is (the ratio
of probabilities)

P (A|B) =
P (A and B)

P (B)

Simple multiplication through by P (B) in Definition 4 produces a small theorem.

Theorem 5 (The "multiplication rule") P (A and B) = P (A|B)P (B)

The possibility that in some cases P (A|B) agrees exactly with P (A) might be interpreted to
mean that knowledge of the occurrence of B then has no impact on one’s assessment of the likelihood
of occurrence for A ... B is somehow uninformative concerning A. When P (A|B) = P (A) the
jargon "event A is independent of event B" is used. As it turns out, the four relationships

P (A|B) = P (A) , P (A|Bc) = P (A) , P (B|A) = P (B) , and P (B|Ac) = P (B)

are all equivalent (each implies all three others). This observation together with the fact that
under independence (i.e. provided P (A|B) = P (A))

P (A) =
P (A and B)

P (B)

and so
P (A)P (B) = P (A and B) ,

suggest a definition of joint independence of multiple events.

Definition 6 Events A1, A2, . . . are independent provided that every event that is an intersection
of two or more of these or their complements has probability that is the product of the corresponding
probabilities.

In the case of two events, independence (that is most easily understood as P (A|B) = P (A)) is
equivalent to all of the relationships

P (A)P (B) = P (A and B) , P (A)P (Bc) = P (A and Bc) ,

P (Ac)P (B) = P (Ac and B) , and P (Ac)P (Bc) = P (Ac and Bc)

holding true. Independence means that the individual probabilities are all that is needed to specify
all joint probabilities for the events.
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3 Counting

(Text Reference/Reading: V&J Appendix A.3)

This material is not statistics nor even really probability, but rather some simple discrete math-
ematics. But it is useful in application of Theorem 3. Both for that reason and because it is helpful
in understanding the form of a so-called "binomial distribution" useful in inference for proportions,
we include it here. There is one basic idea/principle and two important implications to understand.

A counting principle: If a complex action can be accomplished in a series of r steps, the first
of which can be accomplished in n1 ways, the second that can subsequently be accomplished in n2

ways, ... , and the rth that can subsequently be accomplished in nr ways, then the entire action
can be accomplished in

n = n1 · n2 · · · · · nr
ways.

This basic principle leads directly to the solution of two generic counting problems and corre-
sponding sets of jargon and notation.

A first generic counting problem: The number of ordered lists possible for r out of n
distinguishable items (no repetitions allowed) is

Pn,r = n (n− 1) (n− 2) · · · (n− r + 1) =
n!

(n− r)!

(usually called "the number of permutations of n things taken r at a time").
Notice that in making an ordered list of r out of n items, one might think of first choosing r

items from n and then ordering them. That clearly implies that the number of ways that the items
can first be chosen is the ratio of Pn,r to Pr,r. This leads to the second generic problem/result.

A second generic counting problem: The number of unordered collections of r out of n
distinguishable items is (

n
r

)
=
Pn,r
Pr,r

=
n!

(n− r)!r!
(usually called "the number of combinations of n things taken r at a time" or sometimes "n
choose r").
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4 Random Variables and Generic Discrete Distributions

(Text Reference/Reading: V&J Section 5.1)

"Chance" situations lead to quantities whose values might be described as subject to "random"
influences. These are known as random variables in probability modeling. Prior to observation,
these can be described in terms of probabilities. Typical elementary symbology is to use capital
Roman letters near the end of the alphabet (like X,Y, or Z) to stand for such objects.
Modeling for random variables is done in exact analogy to description of coordinate variables in

the mechanics of mass distributions. That is, probability distributions describe how probability
is spread out in 1-d, or 2-d, or ... (depending upon how many random variables are under discussion)
using tools exactly parallel to those used to describe how mass distributions spread mass around
on a line, in a plane, etc. Just as in mechanics, the tools for describing discrete distributions are not
exactly the same as those used in describing their (idealized) continuous counterparts. The former
involve discrete mathematics (technically only requiring the use of algebra) while the latter involve
continuous mathematics (calculus of 1 or 2 or ... variables, depending upon the dimensionality of
the problem under study). We begin with discussion of modeling for single/individual discrete
random variables.
Discrete probability models for single (1-d) random variables use a sample space S specifying

outcomes for the random variable that is either finite or (at least) "countable" in the sense that it
is like the integers or non-negative integers. In this context, probabilities for a random variable X
can be specified by a so-called probability mass function, f (x), giving for each value of x the
probability that X takes that value. That is, a discrete pmf (probability mass function) is

f (x) = P [X = x]

read "f (x) is the probability that the random variable X takes the value x."
To describe/provide summaries of discrete distributions (equally, their pmfs) one can make spike

graphs or probability histograms and compute analogues of the "moments" of mass distributions
in mechanics.

Definition 7 The expected or mean value of the discrete random variable X (the mean of
its distribution) is

EX =
∑
x

xf (x)

and alternative notation for this is µX .

The mean of a discrete probability distribution is exactly the center of mass of that 1-d distri-
bution from mechanics. (The fact that

∑
x f (x) = 1 says that the usual divisor appearing in a

center of mass formula is not needed in the present situation. A probability distribution is a mass
distribution with total mass 1.) The concept of a mass moment of inertia (around the center of
mass) in mechanics has an analogue in probability as the variance of a random variable.

Definition 8 The variance of the discrete random variable X (the variance of its distribu-
tion) is

VarX =
∑
x

(x− EX)
2
f (x) =

∑
x

(x− µX)
2
f (x)

and alternative notation for this is σ2
X .
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The variance of a discrete probability distribution is a mean squared deviation from the aver-
age/expected value of X, a measure of spread for the distribution. It has units that are the squares
of the original units (the units of X). A related measure of distributional spread that has the same
units as X is the standard deviation.

Definition 9 The standard deviation of a random variable X (the standard deviation of its
distribution) is

σX =
√
VarX

The standard deviation is a root mean squared deviation from the average/expected value of X.
The variance of X is an average of the random variable Y = (X − µX)

2 (that is a function of
X). The are many other cases where it is useful to employ the concept of the mean of an arbitrary
function of X, say h (X). One could (at least in principle) work out the distribution for Y = h (X)
(find the possible values and corresponding probabilities for Y ) in order to then find the mean of Y .
Another way of proceeding (that turns out to be equivalent) is to simply define a mean or expected
value for h (X) in terms of the distribution for X.

Definition 10 The expected value or mean of h (X) for a discrete random variable X is

Eh (X) =
∑
x

h (x) f (x)

An alternative (to the pmf f (x)) way to specify the distribution of a random variable X (dis-
crete or not) is through a so-called cumulative distribution function. This is a function giving
probabilities for X taking a value in intervals (−∞, x].

Definition 11 The cumulative distribution function for the random variable X (the cdf
of its distribution) is

F (x) = P [X ≤ x]

In the case of discrete variables, cdfs are stair-step functions, increasing left to right, jumping
up the amount f (x) at the value x.
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5 Standard Discrete Distributions

(Text Reference/Reading: V&J Section 5.1)

There are a number of standard discrete probability distributions. In Stat 587 we’ll consider 3
of them. Two are distributions related to sequences of "success/failure trials." A third is a model
for the number of occurrences of a relatively rare phenomenon across a fixed "interval" of time or
space. (This latter actually also has a connection to success/failure trials, but the connection is
not so direct as for the first two distributions.)
So, to begin, we consider "trials" 1, 2, 3, . . . that each will yield one of two possible outcomes.

We’ll arbitrarily call one of those two possible outcomes a "success" (S) and the other a "failure"
(F) (without attaching any positive or negative connotations to these labels). In this context the
two counting variables

X = the number of S’s in the first n trials (1)

and
Y = the index of the trial on which the first S occurs (2)

are often of interest. Under so-called "Bernoulli process" assumptions, it is possible to identify
simple formulas for pmfs for them.
A Bernoulli process model for S/F trials is one where

1. trials are independent in the sense that the events

Ai = trial i yields a success

are independent events, and

2. the probability of success on each trial is p (a constant value) across all trials.

Under a Bernoulli process model, the distribution for the variable X in display (1) has pmf

f (x) =


(
n
x

)
px (1− p)n−x x = 0, 1, . . . , n

0 otherwise

This is the so-called binomial pmf with parameters (n, p) . (The name derives from the fact that
its values are the terms in a binomial expansion of 1 = (p+ (1− p))n.) For this distribution there
are very simple forms for the mean and variance. That is, for X ∼Bin(n, p) (read "X distributed
as binomial (n, p)"),

EX = np and VarX = np (1− p)

(that is
∑n
x=0 x

(
n
x

)
px (1− p)n−x = np and

∑n
x=0 (x− np)2

(
n
x

)
px (1− p)n−x = np (1− p)).

Under a Bernoulli process model, the variable Y in display (2) has pmf

f (y) =

 p (1− p)y−1
y = 1, 2, . . .

0 otherwise
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This is the so-called geometric pmf with parameter p. (The name derives from the fact that its
values are values in a geometric infinite series that adds to 1.) For this distribution there are very
simple forms for the mean and variance. That is, for Y ∼Geo(p),

EY =
1

p
and VarY =

(1− p)
p2

Further, cumulative probabilities are easily computed from the fact that for y = 1, 2, . . .

1− F (y) = P [Y > y] = py

so that for such y,
F (y) = 1− py

The so-called Poisson probability distributions are used to model variables W that are counts
of the number of occurrences of a relatively "rare" phenomenon across a specified interval of time
or space. (Standard examples are numbers of detectable cracks in a fixed surface area of a material
specimen, numbers of information packets arriving at a switching center during a fixed time interval,
etc.) Under assumptions that

1. numbers of occurrences in non-overlapping intervals are independent,

2. the probability of a single occurrence in a small interval is approximately proportional to the
size of the interval, and

3. relative to the probability of a single occurrence in a small interval, the probability of more
than one occurrence is negligible,

it is possible to derive the Poisson pmf with parameter λ

f (w) =


λw exp (−λ)

w!
for w = 0, 1, 2, . . .

0 otherwise

for the overall count, W . As it turns out, the mean and variance of this distribution are both λ,
i.e.

EW = λ and VarW = λ

(that is,
∑∞
w=0 w

λw exp (−λ)

w!
= λ and

∑∞
w=0 (w − λ)

2 λ
w exp (−λ)

w!
= λ).
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6 Generic Continuous Distributions

(Text Reference/Reading: V&J Section 5.2)

At least as a mathematically convenient idealization, it is common to consider continuous mod-
els for random variables. These are the probability analogues of the continuous mass distributions
of mechanics. Just as a continuous mass distribution is specified in terms of a mass density that is
integrated over appropriate values to find the mass in the region of integration, a continuous prob-
ability distribution is specified in terms of a probability density that is integrated over appropriate
values to find probabilities of interest. That is, in 1-d (for a single random variable) we have the
following.

Definition 12 A random variable X is said to have a continuous distribution provided there is
a function f (x) (called a probability density function) such that for any a < b

P [a < X < b] =

∫ b

a

f (x) dx

It follows from this definition that a pdf (probability density function) f for X is related to the
cdf for X by

F (x) = P [X ≤ x] =

∫ x

−∞
f (t) dt

(and then f (x) = d
dxF (x)).

Moments for discrete mass distributions have analogues for continuous probability distributions.

Definition 13 The expected or mean value of the continuous random variable X (the
mean of its distribution) is

EX =

∫ ∞
−∞

xf (x) dx

and alternative notation for this is µX .

Definition 14 The variance of the continuous random variable X (the variance of its dis-
tribution) is

VarX =

∫ ∞
−∞

(x− EX)
2
f (x) dx =

∫ ∞
−∞

(x− µX)
2
f (x) dx

and alternative notation for this is σ2
X .

The mean and variance of a continuous probability distribution have the same interpretations
(as center of mass and measure of spread of the distribution) as were offered for discrete ones.
Definition 9 (that defines the standard deviation as the square root of the variance) applies equally
to discrete and continuous variables.
The expected value of h (X) for a continuous X is analogous to that for the discrete case.

Definition 15 The expected value or mean of h (X) for a continuous random variable X is

Eh (X) =

∫ ∞
−∞

h (x) f (x) dx
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7 Standard Continuous Distributions

(Text Reference/Reading: V&J Section 5.2)

Just as there are useful standard discrete distributions, there are standard pdf forms that prove
useful in many applications. We here we will consider a few of these.
Possibly the simplest continuous distributions are those that are uniform on some interval. That

is, for θ1 < θ2 the pdf

f (x) =


1

θ2 − θ1
θ1 < x < θ2

0 otherwise

specifies the so-called Uniform (θ1, θ2) distribution. The most common version of this is the case
where θ1 = 0 and θ2 = 1. This case is the target distribution for standard "random number
generators" and is the fundamental building block of modern stochastic/probabilistic simulation.
The cdf for a Uniform (θ1, θ2) random variable is

F (x) =


0 x < θ1

x− θ1

θ2 − θ1
θ1 ≤ x ≤ θ2

1 x > θ2

The mean and variance for a uniform distribution are relatively simple and intuitively reasonable.
That is, if X ∼U(θ1, θ2)

EX =
θ1 + θ2

2
and VarX =

1

12
(θ2 − θ1)

2

The "normal" or Gaussian distributions are the archetypal "bell-shaped" distributions. The
Gaussian pdf with parameters µ and σ2 is

f (x) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)

2

)
As it then turns out

EX ≡
∫ ∞
−∞

x
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)

2

)
dx = µ

and

VarX ≡
∫ ∞
−∞

(x− µ)
2 1√

2πσ2
exp

(
− 1

2σ2
(x− µ)

2

)
dx = σ2

That is, the parameters µ and σ2 are in fact the mean and variance of the distribution.
The case of the Gaussian distribution with µ = 0 and σ = 1 is called the standard normal

case. For this case, the special notation

φ (z) =
1√
2π

exp

(
−1

2
z2

)
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is used for the pdf, and the standard normal cdf

Φ (z) =

∫ z

−∞
φ (t) dt

is routinely tabled. Probabilities for any normal distribution can be obtained using it. That is,
for X ∼N

(
µ, σ2

)
and a < b,

P [a < X < b] =

∫ b

a

1√
2πσ2

exp

(
− 1

2σ2
(x− µ)

2

)
dx

=

∫ b−µ
σ

a−µ
σ

φ (z) dz

= Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

)
= P

[
a− µ
σ

<
X − µ
σ

<
b− µ
σ

]
That is, for X ∼N

(
µ, σ2

)
,

Z =
X − µ
σ

is standard normal.
Another kind of continuous distribution frequently used in engineering and physical science

applications is the family of Weibull distributions and the sub-family of so-called exponential
distributions. For parameters α > 0 and β > 0, the distribution (putting all its probability on
(0,∞)) with cdf

F (x) =

 0 for x < 0

1− exp

(
−
(x
α

)β)
for x ≥ 0

is the Weibull(α, β) distribution. The corresponding pdf can be found by differentiating this fairly
simply cdf. The result is that X ∼Weibull(α, β) has pdf

f (x) =

 0 for x < 0
β

αβ
xβ−1 exp

(
−
(x
α

)β)
for x > 0

The parameter β controls the shape of this pdf, while the parameter α controls the scale. While
the mean and variance for the distribution are not impossible to work out, they are not particularly
simple. For example

EX = αΓ

(
1 +

1

β

)
in terms of the "special function" Γ. Something that is fairly simple to find is the median of the
Weibull(α, β) distribution. Setting F (x) = .5 and solving for x reveals that the "50% point" of
the distribution is

median = α exp

(
− .3665

β

)
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An important special case of the Weibull family is that where β = 1. This is the case of the
exponential distributions, where

F (x) =

{
0 for x < 0

1− exp
(
−
(x
α

))
for x ≥ 0

and

f (x) =

{
0 for x < 0
1

α
exp

(
−
(x
α

))
for x > 0

Then if X ∼Exp(α)
EX = α and VarX = α2
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8 Joint Distributions of Several Random Variables

(Text Reference/Reading: V&J Section 5.4)

Most applications of probability (particularly in statistics) involve more than a single random
variable. The tools discussed thus far must be extended in order to describe the joint behavior
of these multiple variables. For example, for two random variables X and Y , one needs ways of
specifying quantities like

P [X > Y ]

So we consider some simple parts of the theory and use of multivariate distributions. Continuing
the analogy with mechanics, this material is parallel to specification and use of mass distributions
of mechanics in more than a single dimension. For simplicity of exposition, this discussion will be
carried out primarily for the case of bivariate distributions (joint distributions of pairs of random
variables) parallel to 2-dimensional mass distributions. The reader will need to reason by analogy to
the generalization of this material to joint distributions of multiple (more than 2) random variables.
A jointly discrete distribution for two random variables X and Y is specified by a joint prob-

ability mass function, f (x, y), giving for each pair of values (x, y) the probability that the
random vector (X,Y ) takes that pair of values. That is, a discrete joint pmf (joint probability
mass function) is

f (x, y) = P [X = x and Y = y]

and the notation is read "f (x, y) is the probability that the random vector (X,Y ) takes the value
(x, y)." A joint pmf can be represented by either a formula giving its values, or in the case that the
set of (x, y) pairs receiving positive probability is finite, a two-way table giving those probabilities.
For R a subset of 2-dimensional space <2, the probability associated with jointly discrete variables
(X,Y ) taking a (vector) value (x, y) in R is computed by simply summing values of f (x, y), That
is

P [(X,Y ) ∈ R] =
∑

(x,y)∈R

f (x, y)

Associated with a joint distribution for a pair of random variables (X,Y ) are the individual
distributions of the variables (considered one at a time). These individual distributions are called
marginal distributions. For jointly discrete (X,Y ), the marginal distributions are discrete and
have pmfs that can be easily derived from the joint pmf by simple addition. These are

fX (x) =
∑
y

f (x, y) and fY (y) =
∑
x

f (x, y)

The appropriateness of the language "marginal" distribution is especially evident in the discrete
case from the fact that these marginal pmfs can be thought of as given by row or column sums
across tables of joint probabilities (and recorded in the "margins" of the table).
Expected (mean) values for functions of jointly discrete random pairs (X,Y ) are defined in exact

analogy to the univariate case.

Definition 16 The expected value or mean of h (X,Y ) for a jointly discrete random pair (X,Y ) is

Eh (X,Y ) =
∑
(x,y)

h (x, y) f (x, y)
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A jointly continuous distribution for two random variables X and Y is specified by a joint
probability density function, f (x, y). (This is the analogue of a function specifying mass
density in the x-y plane.) Probabilities are found by (bivariate) integration over a region of
interest. That is, for R a subset of 2-dimensional space <2, the probability associated with jointly
continuous variables (X,Y ) taking a (vector) value (x, y) in R is computed as

P [(X,Y ) ∈ R] =

∫ ∫
R
f (x, y) dxdy

For jointly continuous (X,Y ), the marginal distributions are continuous and have pdfs that are
derived from the joint pdf by integration. These are

fX (x) =

∫
f (x, y) dy and fY (y) =

∫
f (x, y) dx

Unsurprisingly, mean values for functions of jointly continuous random pairs (X,Y ) are defined
as integrals.

Definition 17 The expected value or mean of h (X,Y ) for a jointly continuous random pair (X,Y )
is

Eh (X,Y ) =

∫ ∫
h (x, y) f (x, y) dxdy
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9 Conditional Distributions and Independence of Random
Variables

(Text Reference/Reading: V&J Section 5.4 and 5.5)

Associated with a joint distribution for a pair of random variables (X,Y ) are distributions of
the variables conditioned on the value of the other variable (distributions of one variable holding
the value of the second fixed at a particular value of interest). These are (not surprisingly) called
conditional distributions. For jointly discrete (X,Y ), the conditional distributions are discrete
and have pmfs that can be easily derived from the joint pmf by simply "renormalzing" a "slice"
of the joint pmf by dividing by the value of the corresponding marginal pmf (i.e. using a row or
column of a table specifying a joint pmf divided by the corresponding row or column sum of entries).
That is,

fX|Y (x|y) =
f (x, y)

fY (y)
and fY |X (y|x) =

f (x, y)

fX (x)
(3)

Jointly continuous distributions have continuous conditional distributions. For these, a conditional
pdf is simply a "slice" of a joint pmf "renormalized" by dividing by the corresponding marginal pdf
(the integral of that slice). Reinterpreting symbols for pmfs as symbols for pdfs, formula (3) serves
not only to specify conditional pmfs, but conditional pdfs as well.
A particularly simple and easy-to-work-with situation is one where conditional distributions for

a variable are all the same (regardless of the value of conditioning variable or variables). This
can be thought of as modeling a circumstance where knowledge of the value of X provides no
modification of one’s thinking about Y (and vice versa) and is called independence of the random
variables. In this case conditional distributions are, in fact, the marginal distributions (so functions
fX|Y (x|y) = fX (x) for all y and fY |X (y|x) = fY (y) for all x). This means that for all (x, y)

f (x, y) = fX (x) fY (y) (4)

(the joint pmf or pdf is the product of the two marginal pmfs or pdfs).
Where k random variables X,Y, . . . , Z are being modeled as either jointly discrete or jointly

continuous, the generalization of relationship (4) is that joint and marginal pmfs or pdfs are related
by

f (x, y, . . . , z) = fX (x) fY (y) · · · fZ (z) (5)

Where this relationship between joint and marginal distributions holds, the variablesX,Y, . . . , Z are
independent. (NOTICE that relationship (5) must hold for all k-tuples of inputs (x, y, . . . , z).)
Modeling (5) has many useful implications. For one, since modern simulation software aims

to generate (pseudo-) random values that "look" independent, it is often easy to simulate a large
number of realizations of (X,Y, . . . , Z) and plug them into a function g (x, y, . . . , z) and thereby
simulate realizations of

U ≡ g (X,Y, . . . , Z)

The empirical properties of these realizations can in turn be used to get approximate answers to
probability problems involving U . One application of this idea particularly useful in engineering
and physical science is that of making "propagation of error" analyses to understand how variation
or uncertainty in inputs X,Y, . . . , Z propagates to the output U . (This is, e.g., often quite helpful
in the analysis of measurement systems.)
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Joint distributions of independence lead to simple formulas for means and variances for variables
made up as linear combinations from them. That is, when k random variables X,Y, . . . , Z are
independent and a0, a1, a2, . . . , ak are constants, the linear combination

U = a0 + a1X + a2Y + · · ·+ akZ

has mean
EU = a0 + a1EX + a2EY + · · ·+ akEZ

(in other notation, µU = a0 + a1µX + a2µY + · · ·+ akµZ) and variance

VarU = a2
1VarX + a2

2VarY + · · ·+ a2
kVarZ

(in other notation, σ2
U = a2

1σ
2
X + a2

2σ
2
Y + · · ·+ a2

kσ
2
Z).

The so-called "propagation of error formulas" (see Section 5.5.4 of V&J) provide approximate
means and variances for variables U = g (X,Y, . . . , Z) with general (non-linear) g and independent
inputs X,Y, . . . , Z based on first order Taylor approximation of a function. It’s easy enough to
simulate values U , that in a world where computing power is plentiful, one might as well do so
(rather than make the potentially far less accurate calculus-based approximations).
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10 IID Models and the "Central Limit Effect"

(Text Reference/Reading: V&J Section 5.5)

A very important version of the use of independence in modeling multiple random variables, is
that where each variable has the same marginal distribution. Such models are often termed "iid"
(independent identically distributed) models. These are models for "random draws from a fixed
(conceptually) infinite universe (or population)." They are used in engineering and physical science
to describe

1. observation of a physically stable process, and

2. observation of purposely "random" sampling from a huge (relative to sample size) group of
objects.

In such contexts, one might well want to suppose that n random variables X1, X2, . . . , Xn are
independent with a common marginal distribution. (In statistical inference, this is the so-called
"one sample model.")
One particularly important variable that can be made from such X1, X2, . . . , Xn is their sample

mean

X̄ =
1

n

n∑
i=1

Xi =
1

n
X1 +

1

n
X2 + · · ·+ 1

n
Xn

Since this is a linear combination of independent random variables, its theoretical mean and variance
follow immediately from the formulas just presented. That is,

EX̄ = µX̄ =
1

n
EX1 +

1

n
EX2 + · · ·+ 1

n
EXn = µ = EX

where µ =EX is standing for the mean of the common marginal probability distribution of X1, X2,
. . . , Xn. The random variable that is the arithmetic average of the sample has a mean/expected
value that is the same as that of the marginal distribution. In a similar way,

VarX̄ = σ2
X̄ =

(
1

n

)2

VarX1 +

(
1

n

)2

VarX2 + · · ·+
(

1

n

)2

VarXn =
1

n
VarX =

1

n
σ2

where σ2 =VarX is standing for the variance of the common marginal probability distribution of
X1, X2, . . . , Xn. The random variable that is the arithmetic average of the sample has a variance
that is that of the marginal distribution divided by the sample size. That is, in this context

σX̄ =
σ√
n

There are two other probability facts that tell one even more about the distribution of X̄ in an
iid model. We’ll state them both as theorems.

Theorem 18 In an iid model, if the common marginal distribution of the variables X1, X2, . . . , Xn

is normal, so also is the distribution of X̄.
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Theorem 19 (The Central Limit Theorem) In an iid model, if the common marginal distri-
bution of the X1, X2, . . . , Xn has a finite variance and n is large, then the distribution of X̄ is
approximately normal in the sense that

Z =
X̄ − µ
σ/
√
n

is approximately standard normal.

The Central Limit Theorem promises that "for large n" probabilities for Z are approximately
standard normal probabilities. The quality of those approximations of course increases with n.
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11 Large Sample Confidence Limits for a Single Mean µ

(Text Reference/Reading: V&J Section 6.1)

One of the most basic questions of statistical inference is this:

Based on observations x1, x2, . . . , xn from a single population/universe/process, how
might one make an estimate of the mean of that population/universe/process and attach
to it a sensible quantification of reliability of that estimate?

The material of the last section begins to provide an answer to this question. We use it here to begin
study of probability-based statistical inference. As a matter of notation for all that follows, (as is
completely standard) we now drop the convention that random variables are always represented by
capital letters, and alert the reader that it will be necessary to determine from context whether a
letter is standing for a random variable, one of its possible values, or some constant.
For iid observations (from a stable process or large fixed population) with mean µ and standard

deviation σ,
x1, x2, . . . , xn ,

the previous section said that provided the distribution sampled is normal or the sample size (n) is
large, the sample mean

x̄

is approximately normal with mean µ and standard deviation σ/
√
n. This implies for example

that (since for Z standard normal P [−1.645 < Z < 1.645] = .90),

P

[
x̄ is within 1.645

σ√
n
of µ

]
≈ .90

But the event
x̄ is within 1.645

σ√
n
of µ

is the event
x̄− 1.645

σ√
n
< µ < x̄+ 1.645

σ√
n

and so (before observations are made) the random limits

x̄± 1.645
σ√
n

have a 90% chance of bracketing µ. These might thus be called "90% (two-sided) confidence limits"
for µ.
More generally, (typically unusable since σ will rarely be known when µ is to be estimated)

confidence limits for µ are
x̄± z σ√

n
(6)

Different choices of z > 0 produce different confidence levels P [|Z| < z] for a two-sided interval
with endpoints (6). One or the other of endpoints (6) can be used to make a one-sided interval for
µ with confidence level P [Z < z]. The biggest drawback of this development is that formulas (6)
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involve the typically unknown σ. This has remedies, and the simplest can be used when n is large
and is presented next.
It turns out that there is an extension of the central limit theorem says that under an iid model,

for large n the variable

Z =
x̄− µ
s√
n

(that involves the sample standard deviation s in place of the population standard deviation σ
appearing in Theorem 19) is also approximately standard normal. The same logic that leads to
limits (6) then leads to practical confidence limits for µ

x̄± z s√
n

(7)

that do not involve the typically unknown population standard deviation. As is the case for limits
(6), both of limits (7) can be used at once to make a two-sided interval and a single one of them
can be used to make a one-sided interval (to make a lower or upper confidence bound).
It is essential to understand the sense in which there is a stated confidence associated with an

interval made using endpoints like (7). A confidence level is a kind of "reliability" of the inference
method, a "lifetime winning percentage" one would experience using the method repeatedly (some-
times having a good result and sometimes not). The reader should carefully study pages 341-342
of V&J in this regard and that full discussion will not be repeated here.
The "plus or minus part" of limits (6) or (7), namely

z
σ√
n
or z

s√
n

,

might be termed a "margin of error" associated with estimating µ. Armed with a target (say m)
for such a margin of error and values for the population standard deviation and confidence level
(and therefore z), the equation

m = z
σ√
n

can be solved for a sample size, n, producing that margin of error. This provides some elementary
guidance for the "sample size question" (for estimating µ).
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12 Large Sample Significance Testing for a Single Mean µ

(Text Reference/Reading: V&J Section 6.2)

A second standard type of probability-based statistical inference is called hypothesis testing.
It has "significance testing" and "decision-making" forms. For reasons laid out in detail in V&J
Section 6.2, Vardeman holds that the making of confidence limits is far more informative and prac-
tically important than hypothesis testing. However, because testing is common in the engineering
and scientific literature that graduates of Stat 587 must read, it is necessary to also discuss it. The
primary thrust of the V&J discussion of testing concerns the "significance testing" version of the
methodology, but some attention is given to the decision-making version. It is introduced in Stat
587 in the context of large sample inference for a single mean.
Significance testing is essentially a methodology for probabilistically assessing the strength of

evidence in a dataset against the possibility that a given statement about model/population parame-
ters is true. It is a way of assessing whether one has enough data to clearly "see" the difference
between a model parameter and some hypothesized numerical value for that parameter.
The 5-step significance testing format used in V&J provides a consistent way of presenting the

results of significance tests, and its use will be required in Stat 587. The steps are these:

1. State a null hypothesis. In the simplest cases, this is a statement of the form

H0:parameter = #

that (for a number of interest, #) embodies the "status quo"/"no data" view of the scenario
under study.

2. State an alternative hypothesis of one of the three forms

Ha :parameter
>
6=
<

#

that is meant to describe departures from H0 that are of interest/that one wishes to be able
to detect.

3. Give

(a) (only) a (formula for a) test statistic (a data summary) to be used (NOT plugging
data into the formula at this stage),

(b) a complete specification (name and appropriate parameter values) of a probability distri-
bution (a "null" or "reference" distribution) that describes variation in the test statistic
if in fact the null hypothesis is exactly true, and

(c) a specification of what type(s) values of the test statistic will be counted as evidence
against H0 and in favor of Ha .

4. Compute the observed value of the test statistic. (This is where data are plugged into the
formula from 3(a) and a single value corresponding to the sample is computed and displayed.)
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5. Find, report, and interpret a p-value (or so-called "observed level of significance"). This
is the probability that the reference distribution (in 3(b)) assigns to values of the test statistic
more extreme (per 3(c)) than the one observed. Small p-values are counted as evidence
against H0 and in favor of Ha . They more or less indicate that one has enough data to see
difference between "parameter" and "#". (However, a p-value MAY NOT be interpreted as
a "probability that H0 is true," a quantity that is simply without rational definition.)

The first application of the significance testing logic met in Stat 587 concerns large n tests of
H0:µ = # (based on an iid model for sampling a stable process or fixed large population) where
a number appropriate in the applied context replaces #. The corresponding possible alternative
hypotheses are

Ha :µ > #, Ha :µ 6= #, and Ha :µ < #

The test statistic

Z =
x̄−#
σ√
n

and its more typically relevant version (not involving the typically unknown σ)

Z =
x̄−#
s√
n

have approximately standard normal distributions when H0 is true (and µ = #). Corresponding to
the three possible alternative hypotheses are specifications 3(c) of observed values z (of the random
variable Z) with respectively

large z, large |z| , and small (large negative) z

producing p-values respectively

1− Φ (z) , 2 (1− Φ (|z|)) , and Φ (z)

The decision-making version of hypothesis testing uses the observed value of a test statistic to
choose between remaining with a "status quo" null hypothesis and being compelled to reject it in
favor of the alternative hypothesis in light of the evidence provided by the data. There is standard
jargon associated with this approach. Part of it is summarized in Table 2.

Table 2: Standard Testing Jargon

Decision in Favor of
H0 Ha

Actual H0 Type I Error
Situation Ha Type II Error

The probability of rejecting H0 computed using the reference distribution is usually called the
Type I error rate for testing. This is often called "α" and the criterion by which the decision
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is made is chosen to guarantee that α is small. This makes the standard decision-making method-
ology asymmetric, more or less "giving H0 the benefit of any doubt" by requiring that evidence
(summarized in the test statistic) for Ha be quite strong before adopting the alternative hypothesis.
One chooses α (in advance of testing) to be small (values like α = .05 or α = .01 are frequently
used) and runs only an α probability of rejecting the null hypothesis when it is in fact exactly
correct.
The connection between the significance testing and decision-making approaches to hypothesis

testing is that to get a test with Type I error rate α, one employs the decision rule

"reject H0 in favor of Ha if p-value < α"

(Again, one rejects the null hypothesis when the sample evidence against it is strong.)
V&J Section 6.2 details a number of critiques of the hypothesis testing paradigm. To simply

list some of these to close this section:

1. p-values are highly sample-size-dependent and give no idea of "how wrong" a null hypothesis
is,

2. statistical significance is not at all "practical importance" and this fact is often forgotten, and

3. confidence limits implicitly provide testing information and much more besides.
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13 Small Sample Inference for a Normal Mean µ

(Text Reference/Reading: V&J Section 6.3.1)

The previous two sections of this outline introduced confidence intervals and hypothesis testing,
using the case of inference for a single mean based on a large sample. A natural next question
would be "What can be done if n is not large?" An important answer is based on a probability
fact about the random variable

T =
x̄− µ
s√
n

(8)

when x1, x2, . . . , xn are iid from a normal distribution (with mean µ and standard deviation σ).
While the presence of s (and not σ) in formula (8) prevents the conclusion that T is normal

(unless n is large, in which case there is an approximately normal distribution), there is an exact
known form for the distribution, called the "Student t distribution." ("Student" was the pen
name of the person who first derived the form of the pdf.)
The so-called "t distribution with degrees of freedom parameter ν" has pdf

f (t) =

Γ

(
ν + 1

2

)
Γ
(ν

2

)√
πσ

(
1 +

t2

ν

)− (ν + 1) /2

The t pdfs are bell-shaped and centered at 0 like the standard normal pdf, but are "flatter"/more
spread out than the standard normal. As ν increases they approach the standard normal density
as a limit (and for ν of at least 30 or so, their probability assignments are little different from
those of the standard normal distribution). Tables and computer functions provide t distribution
probabilities and distribution percentage points.
As it turns out, the quantity (8) has (for an underlying normal distribution being sampled)

the t distribution with ν = n − 1 degrees of freedom. That means that for a given sample size
and desired probability, γ, one may use a table of t distribution percentage points (or a computer
routine to evaluate such) to find a number t such that

P [a tn−1 random variable is t or less] = γ

This provides confidence limits for a normal mean

x̄± t s√
n

exactly parallel to the large sample limits (6) (based on z rather than t), and tn−1 distribution-based
p-values for testing H0:µ = # (for a normal mean) based on the test statistic

T =
x̄−#
s√
n

While strictly speaking, these methods provide guaranteed "exact" confidence levels and p-values
only when sampling from "exactly normal" distributions, they are generally believed to be fairly
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"robust." That is, if a distribution/population sampled is not "terribly/ridiculously non-normal,"
actual/real confidence levels and p-values made using the tn−1 distribution percentage points are
typically not radically different from the nominal ones (the ones corresponding to normal underlying
distributions).
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14 Prediction and Tolerance Intervals for a Normal Distri-
bution

(Text Reference/Reading: V&J Section 6.6)

The inference methods for µ of the previous three sections concern using a sample to make
properly hedged statements about a distribution parameter (its mean). A fundamentally differ-
ent problem (that is nevertheless often confused with the former) is that of using a sample to
make properly hedged statements about likely values of additional observations (individual mea-
surements/values) from a distribution. We will here briefly consider two versions of this problem:

1. the making of prediction intervals (intended to bracket a single additional value from the
distribution), and

2. the making of tolerance intervals (intended to bracket most of the underlying distribution)

based on samples from normal distributions. (These are definitely normal distribution methods,
not possessing the kind of "robustness" just mentioned for the t methods of inference for µ. Inves-
tigation of the plausibility of a normal distribution underlying a dataset can be approached through
normal plotting as covered in Sections 3.2.3 and 5.3 of V&J and briefly reviewed in Section 19 of
this outline.)
When sampling from a normal distribution, if x̄ and s are based on a sample of size n and a

single additional observation xnew is drawn from the distribution, it is possible to prove that the
random variable

x̄− xnew

s

√
1 +

1

n

has a tn−1 distribution. That in turn implies that one or both of the limits

x̄± ts
√

1 +
1

n

can be used to make intervals with a desired confidence for predicting xnew . (Note that as compared
to the t confidence limits for µ, these limits have "an extra 1" under the square root and are much
"looser" than the confidence limits for the mean.)
Again when sampling from a normal distribution, if x̄ and s are based on a sample of size n, it

is possible to derive constants τ2 and τ1 (specific to the sample size) so that the two-sided interval
with endpoints

x̄± τ2s

and the one-sided intervals
(−∞, x̄+ τ1s) and (x̄− τ1s,∞)

each have a stated confidence of capturing a desired fraction of the underlying normal distribu-
tion. (Again, these are definitely normal distribution methods, not robust against deviations from
normality of the data-generating mechanism.) For example, one can find tabled values τ2 or τ1
intended to give 95% confidence in bracketing 99% of the normal distribution that produced the n
observations in hand.
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15 Inference for a Mean Difference µd and for a Difference
in Means µ1 − µ2

(Text Reference/Reading: V&J Sections 6.3.2, 6.3.3, 6.3.4)

Two problems often confused by students are those of inference for a mean difference and
inference for a difference in means. In the first case, a single sample of data pairs (for example,
"before" and "after" or on "treated" and "untreated" versions or on "aspect 1" and "aspect 2" of
the same object) can be reduced to differences by subtraction. In the second case, two different
samples of single measurements (potentially of different sizes, n1 and n2) are gathered with the
object of comparison of two corresponding distribution/population means, µ1 and µ2.
In the case of inference for a mean difference, data pairs 1, 2, . . . , n are first reduced to differences

d1, d2, . . . , dn that can themselves be processed to make a sample mean, d̄, and a sample standard
deviation, sd. Then, the methods of Sections 11 through 13 can be applied to make confidence
limits for the mean difference µd or to do significance testing for H0:µd = #. For example, as per
Section 13, confidence limits for µd are

d̄± t sd√
n

(Actually, for that matter, the prediction or tolerance limits of the previous section can also be
used if there is interest in locating a single additional difference, dnew , or most of the distribution
of d’s.)
The case of comparing two means is not simply an application of things that have gone before.

Assuming that one has (independent) samples from two different populations (with respective means
µ1 and µ2) of respective sizes n1 and n2, what can be done for inference concerning µ1−µ2 depends
upon the sample sizes. If both are big, then approximate confidence limits for µ1 − µ2 are

x̄1 − x̄2 ± z

√
s2

1

n1
+
s2

2

n2

and the hypothesis H0:µ1 − µ2 = # can be tested using the statistic

Z =
x̄1 − x̄2 −#√

s2
1

n1
+
s2

2

n2

with approximate p-values obtained from the standard normal distribution.
Where at least one of the sample sizes is small, in Stat 587 we will use methods based on the

so-called "Satterthwaite approximation." This treats the variable

T =
x̄1 − x̄2 − (µ1 − µ2)√

s2
1

n1
+
s2

2

n2

(which in fact does not have a simple named probability distribution) as approximately t distributed
with (random) approximate degrees of freedom given on page 383 of V&J. It turns out that the
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form in display (6.37) of V&J is at least as big as the smaller of n1 − 1 and n2 − 1. So (as a
conservative simplification of what is in second part of Section 6.3.4 of V&J) with

ν̂ = min (n1 − 1, n2 − 1)

the limits

x̄1 − x̄2 ± t

√
s2

1

n1
+
s2

2

n2

(where t is based on ν̂ degrees of freedom) serve as approximate confidence limits for µ1 − µ2, and
the statistic

T =
x̄1 − x̄2 −#√

s2
1

n1
+
s2

2

n2

can be used to test the hypothesis H0:µ1 − µ2 = # with approximate p-values derived from the t
distribution with ν̂ degrees of freedom.

There is a second method of analysis for the small sample version of this problem treated in
Section 6.3.4 based on the additional assumption that σ1 = σ2. It is actually related to analyses we
will use for comparison of not just 2, but rather r different means (treated in Chapter 7 of V&J and
beginning in Section 20 of this outline). For the case of 2 means, we will use the above formulas, as
they are more generally applicable than the ones based on the additional (equal standard deviations)
assumption.
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16 Inference for Normal Standard Deviations σ, or Vari-
ances σ2

(Text Reference/Reading: V&J Section 6.4)

Sometimes, assessment of the spread of a distribution is more important than assessing the
location/center of the distribution. It is thus important to have inference methods for standard
deviations. Relatively simple methods are available for data-generating mechanisms that produce
normal observations. One- and two-sample versions of these are the subjects of this section.
When sampling from a normal distribution, the (non-negative) quantity

(n− 1) s2

σ2

has a simple probability distribution, for which tables and numerical tools for evaluating probabili-
ties are easy to find. The distribution is called the "chi squared distribution with ν = n−1 degrees
of freedom." The χ2

ν pdf (that is used to produce probabilities) is of the form

f (x) =


1

2ν/2Γ
(
ν
2

)x(ν/2)−1 exp
(
−x

2

)
for x > 0

0 otherwise

The fact that when sampling a normal distribution (n− 1) s2/σ2 ∼ χ2
n−1 implies that for L and

U respectively small lower and upper percentage points of the χ2
n−1 distribution, one or both of the

endpoints

s

√
n− 1

U
and s

√
n− 1

L

can serve as confidence limits for σ. (Of course, confidence limits for variances follow from squaring
the values above.) Further, the statistic

X2 =
(n− 1) s2

#

can be used to test H0:σ2 = # with p-values derived from the χ2
n−1 distribution.

Comparison of two normal distribution standard deviations can be based on the fact that when
sampling independently from two normal distributions, the (non-negative) quantity

s2
1/σ

2
1

s2
2/σ

2
2

has a simple probability distribution, for which tables and numerical tools for evaluating probabil-
ities are easy to find. The distribution is called the "(Snedecor) F distribution with ν1 = n1 − 1
(numerator) and ν2 = n2 − 1 (denominator) degrees of freedom." The Fν1,ν2 distribution has pdf

f (x) =


Γ
(
ν1+ν2

2

) (
ν1
ν2

)ν1/2
x(ν1/2)−1

Γ
(
ν1
2

)
Γ
(
ν2
2

) (
1 + ν1x

ν2

)(ν1+ν2)/2
for x > 0

0 otherwise
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The fact that when sampling independently from two normal distributions
(
s2

1/σ
2
1

)
/
(
s2

2/σ
2
2

)
∼

Fn1−1,n2−1 implies that for L and U respectively small lower and upper percentage points for the
Fn1−1,n2−1 distribution, one or both of the endpoints

s2
1

U · s2
2

and
s2

1

L · s2
2

can serve as confidence limits for σ2
1/σ

2
2 . (Confidence limits for ratios of standard deviations follow

by taking square roots of the values above.) Further, the statistic

F =
s2

1/s
2
2

#

can be used to test H0:σ2
1/σ

2
2 = # with p-values derived from the Fn1−1,n2−1 distribution.

Using standard F tables (that provide only upper percentage points) requires knowing that
lower percentage points of the Fn1−1,n2−1 distribution can obtained as reciprocals of corresponding
upper percentage points of the Fn2−1,n1−1 distribution (the F distribution with numerator and
denominator degrees of freedom switched). It is also important to know that two-sided p-values for
H0:σ2

1/σ
2
2 = # are usually made by doubling the upper F tail area for the ratio of sample variances

made with the larger sample variance in the numerator.
It should be said here that these methods are really only reliable where the underlying distrib-

ution is reasonably normal. Again, the normal probability plotting covered in Sections 3.2.3 and
5.3 of V&J and briefly reviewed in Section 19 of this outline is relevant in assessing the plausibility
of this circumstance.
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17 Inference for Proportions/Binomial Success Probabilities
p

(Text Reference/Reading: V&J Section 6.5)

Another pair of important problems of elementary inference are those for a single p and for
the difference between two p’s (p1 − p2). These arise when practical interest centers on fractions
of large populations having a particular characteristic or the fractions of outcomes generated by
physically stable processes that are of a particular type.
The basic fact that enables inference for a single p is that for X ∼Bi(n, p), if n is large then X

is approximately normal and indeed

Z =
X − np√
np (1− p)

=

X

n
− p√

p (1− p)
n

is approximately standard normal. Writing

p̂ =
X

n

for the sample fraction of "success" outcomes in n trials, this fact leads directly to the (unusable)
large sample confidence limits for p,

p̂± z
√
p (1− p)

n

V&J make usable versions of these limits by replacing p (1− p) with p̂ (1− p̂). As it turns out,
this substitution produces intervals that can for extreme values of p fail to deliver upon nominal
confidence levels, the intervals basically tending to be too short.
A modification to this line of reasoning is to replace p̂ (1− p̂) with something a bit larger. A

simple choice that works remarkably well is to define

p̃ =
np̂+ 2

n+ 4
=
X + 2

n+ 4

(a "sample faction" where 2 fictitious "S" outcomes and 2 fictitious "F" outcomes have been added
to the count of X actual successes in n actual trials) and to replace p (1− p) with p̃ (1− p̃). This
leads to large sample confidence limits for p,

p̂± z
√
p̃ (1− p̃)

n

(not presented in V&J, but the best simple formula now known).
Large sample testing for a single p can be done exactly as presented in V&J. The hypothesis

H0:p = # can be tested using the test statistic

Z =
p̂−#√

# (1−#)

n
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and approximate p-values derived from the standard normal distribution.
Two large (independent) samples from populations or processes with underlying proportions p1

and p2 producing sample proportions of successes (among respectively n1 and n2 trials) p̂1 and
p̂2 can be used to do inference for p1 − p2. The same logic that enables inference for a single p
produces large sample confidence limits for p1 − p2,

p̂1 − p̂2 ± z

√
p̃1 (1− p̃1)

n1
+
p̃2 (1− p̃2)

n2

(where the p̃’s are as for the single sample case). And hypothesis testing for H0:p1 − p2 = 0 can
be done exactly as presented in V&J. With

p̂ =
n1p̂1 + n2p̂2

n1 + n2

the test statistic

Z =
p̂1 − p̂2√

p̂ (1− p̂)
(

1

n1
+

1

n2

)
can be used with p-values derived from an approximately standard normal reference distribution.
While some small sample formulas methods exist for these inference problems, they are not

particularly simple. More importantly, they are not typically of practical importance. Small
numbers of S/F outcomes provide very little information about underlying p’s, and inferences based
on them rarely provide definitive practical conclusions.
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18 One- and Two-Sample Inference Formula Summary
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19 Q-Q Plotting and Probability Plotting (e.g. Normal Plot-
ting)

(Text Reference/Reading: V&J Sections 3.2.3, 5.3)

The comparison of "shapes" for distributions is a basic statistical activity. The most important
version of this is comparison of the shape of an empirical distribution (the "shape" of a dataset)
to the shape of a theoretical/probability distribution. One expects the shape of a dataset to be
indicative of the nature of a corresponding underlying data-generating mechanism. So if (for exam-
ple) one intends to use statistical methodology built on a mathematical assumption of normality,
checking to see that a sample is not terribly non-normal-looking is exercise of due diligence in
attempting to not make unjustified conclusions.
The comparison of shapes of two datasets (two empirical distributions) is less important than

comparison of an empirical shape to a theoretical shape, but the same methodology is used to do
both (and this methodology easiest to understand for the empirical versus empirical case). It is
based on the notion of a distribution "quantile" Q (p). In rough terms, this is a number that places
a fraction p of the distribution to the left and a fraction 1− p of the distribution to the right. The
exact convention used in Stat 587 to define quantiles of a finite dataset is discussed in V&J. (For p
of the form (i− .5) /n for integer i and sample size n, Q (p) is the ith smallest value in the sample.
Other quantiles are defined by linear interpolation.)
A Q-Q plot is then a plot of ordered pairs

(Q1 (p) , Q2 (p))

for some appropriate set of values of p. For the case of two datasets, the values of p = (i− .5) /n for
n the smaller of the two sample sizes are typically used. For the case of an empirical distribution
and a theoretical one, the values p = (i− .5) /n are used.
In the important special case where assessing agreement with the normal distributional shape

is in view, standard normal quantiles Qz (p) = Φ−1 (p) are employed for the vertical plotting
positions. Supposing that xi is the ith smallest ordered data value, the n points plotted on a
normal (probability) plot are then of the form(

xi, Qz

(
i− .5
n

))
What makes a Q-Q plot informative is the fact that equality of shape for two distributions is

equivalent to them having linearly related quantile functions. So linearity on a Q-Q plot is indicative
of equality of shape for the two distributions being considered. And departures from linearity are
potentially interpretable as highlighting various kinds of differences in shape (such as a "long tail"
of one distribution relative to the other).
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20 The One-Way Normal Model, Residuals, and Pooled Sam-
ple Standard Deviation sP

(Text Reference/Reading: V&J Section 7.1) (Also V&J SMQA Section 5.1.1)

The ultimate goal in Stat 587 is the consideration of data from multifactor studies where the
object is quantification of the impact of those variables on some response, y. In those contexts,
every different set of values for the (multiple) factors defines a different "sample" of y’s. That is,
practical multifactor studies are of necessity multisample studies. Before digging into the specifics
of different kinds of multifactor statistical methodologies, we begin here by considering what can
be said in general about inference based on r-sample (for r > 1) studies without reference to any
specific pattern or structure associated with factors defining the multiple samples. Chapter 7 of
V&J terms this material the analysis of "unstructured" multisample studies. Somewhat more
common terminology refers to these basic methods as "one-way" methods.
The most commonly used statistical model for r-sample data is the "one-way normal model."

In words, that model says that each of r different (sets of) conditions independently produces
normally distributed observations with means that may differ, but whose standard deviations are
all the same. In symbols, if

yij = the jth observation from (set of) condition(s) i

then for i = 1, 2, . . . , r and j = 1, 2, . . . , ni for each i, the observations are independent with

yij ∼ N
(
µi, σ

2
)

for parameters µ1, µ2, . . . , µr and σ2. Or if εij for i = 1, 2, . . . , r and j = 1, 2, . . . , ni for each i are
iid N

(
0, σ2

)
random errors,

yij = µi + εij (9)

Representation (9) is intuitively attractive, in that it partitions what is observed (yij) into a kind
of "signal" (µi) plus "noise" (εij). The magnitude of the noise is governed by the parameter σ, and
typically the main goal of statistical analysis is understanding any interpretable patterns extant in
the signal.
Where sample sizes n1, n2, . . . , nr are all not small, a way of investigating the plausibility of the

basic one-way normal model is to make normal plots of the r different samples on a single set of
axes (looking for more-or-less parallel more-or-less straight-line plots). But often, samples sizes in
multisample studies are small and something else must be done to make sanity checks on the model
assumptions. What is standard is based on so-called "residuals." That is, for

ȳi =
1

ni

ni∑
j=1

yij

the sample mean of observations from the ith (set of) condition(s), the residual

eij = yij − ȳi

is an approximation for the error
εij = yij − µi
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(The residual is what is "left over" in an observation after accounting for the apparent/approximate
signal ȳi.)
Since the model (9) says that the errors εij are iid N

(
0, σ2

)
random variables, one can expect

their approximations, the residuals eij , to look more or less like a random sample from a normal
distribution with mean 0. So various kinds of plotting of residuals is done, hoping to see plots
consistent with this expectation. A linear normal plot of residuals and lack of any obvious pattern
or trend on plots of residuals against variables not of interest (like time order of observation, or
some extraneous experimental condition like ambient temperature, etc.) is what one hopes to find.
As we’ve already said, the parameter σ, governs the level of "noise" through which important

changes in mean response must be seen. It is then essential to estimate this parameter. Under the
one-way model assumptions, every sample standard deviation serves to estimate the same σ. As
such, it makes sense to "pool" the information they all carry into a single estimate of σ. To this
end, we define the pooled sample variance (a weighted average of the individual sample variances)

s2
P =

(n1 − 1) s2
1 + (n2 − 1) s2

2 + · · ·+ (nr − 1) s2
r

(n1 − 1) + (n2 − 1) + · · ·+ (nr − 1)

=

∑
i,j (yij − ȳi)2

n− r

(using the notation n for the total number of observations,
∑r
i=1 ni, in the last line here). Taking

the square root, we get a pooled sample standard deviation

sP =
√
s2
P

(sometimes called a "root mean squared error").
Under the one-way normal model assumptions, it’s possible to make confidence limits for σ of

the form

sP

√
n− r
U

and/or sP

√
n− r
L

for U and/or L small (upper and/or lower) χ2
n−r percentage points. These provide bounds on the

level of "background noise" in a multisample study.
A slight refinement of the development of residuals concerns the fact that while the unobservable

errors εij have the same variance (σ2), the residuals eij do not have the same variance. It turns out

that Vareij =
ni − 1

ni
σ2, which potentially varies with i. So, sometimes, instead of plotting with

ordinary residuals eij one removes this issue (by standardization) and plots with standardized
residuals

e∗ij =
eij

sP

√
ni − 1

ni

hoping to see approximately "standard -normal-looking" plots.
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21 Confidence Intervals for Linear Combinations of Means

(Text Reference/Reading: V&J Section 7.2) (See also V&J SMQA Section 5.1.2)

The pooled sample standard deviation identifies the level of background noise against which
observed differences in sample means in an r-sample study are to be judged. This section provides
a basic technical tool for making such judgments. That is the making of confidence limits for a
linear combination of condition means.
For any set of constants c1, c2, . . . , cr define the linear combination of model means

L = c1µ1 + c2µ2 + · · ·+ crµr (10)

A natural data-based approximation to this is the corresponding linear combination of sample
means

L̂ = c1ȳ1 + c2ȳ2 + · · ·+ crȳr (11)

Then, under the one-way normal model, one or both of the values

L̂± tsP

√√√√ r∑
i=1

c2i
ni

(12)

for t a small upper percentage point of the t distribution with ν = n− r degrees of freedom can be
used as confidence limits for L. (Rationale for this formula is on pages 464 and 465 of V&J.)
Particular special cases of this development provide important simple intervals for a multisample

study. Where a single ci is 1 and all others are 0, one has confidence limits for a single mean.
Where one ci is 1, another is −1, and all others are 0, one has confidence limits for a difference in
two particular means.
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22 One-Way ANOVA

(Text Reference/Reading: V&J Section 7.4.1-7.4.3)

V&J briefly discusses testing the hypothesis H0:L = # for a particular set of values c1, c2, . . . , cr.
But by far the most commonly considered hypothesis testing problem in the one-way model is that
for H0:µ1 = µ2 = · · · = µr, namely that there are no differences at all among the distributions of
responses for the r conditions studied. There is a standard F test for this problem that additionally
provides important intuition about "kinds of variation" seen among the n responses yij .
Consider first the overall/grand sample mean computed ignoring the sample boundaries

ȳ =
1

n

∑
i,j

yij

(Note that this is not in general the same as the arithmetic average of the ȳi’s.) As a measure of
the variation among the ȳi, we then take a sum of squared deviations of these from the grand mean

r∑
i=1

ni (ȳi − ȳ)
2

This is a possible quantification of "between-sample variation." It is big when there are large
differences among the sample means, indicating large "signals" in the data.
Ultimately, to test H0:µ1 = µ2 = · · · = µr one can use the test statistic

F =

1

r − 1

r∑
i=1

ni (ȳi − ȳ)
2

s2
P

=

1

r − 1

r∑
i=1

ni (ȳi − ȳ)
2

1

n− r
∑
i,j

(yij − ȳi)2
(13)

and an Fr−1,n−r reference distribution, where p-values are upper tail areas beyond the sample value
of F produced by the data in hand.
The sums in the numerator and denominator of the F statistic (13) have an illuminating rela-

tionship to an overall/grand sample variance (computed ignoring the sample boundaries). That
is, for s2 the overall sample variance, it is an algebraic fact that

(n− 1) s2 =

r∑
i=1

ni (ȳi − ȳ)
2

+ (n− r) s2
P

In other symbols, this is

∑
i,j

(yij − ȳ)
2

=

r∑
i=1

ni (ȳi − ȳ)
2

+
∑
i,j

(yij − ȳi)2
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These are versions of the so-called "one-way ANOVA identity." (ANOVA is standard jargon for
"ANalysis Of VAriance.") The terms in this identity are called "sums of squares." The first is
called a "total" sum of squares. The second is usually called a "treatment" sum of squares. The
third is called the "error" sum of squares. In this language, the identity is

SSTot = SSTr + SSE

As a way of both organizing the computation of the F statistic (13) and providing additional
intuition about partitioning of both observed variation in response and "degrees of freedom," it is
common to summarize the computation of the one-way ANOVA F statistic in a so-called "ANOVA
Table." (There are actually many possible ANOVA tables in applied statistics. The one appropriate
here is in Table 3.) The "MS" column (that has sums of squares divided by degrees of freedom in
it) is a "mean square" column.

Table 3: General Form of the One-Way ANOVA Table

ANOVA Table for Testing H0:µ1 = µ2 = · · · = µr

Source SS df MS F
Treatments SSTr r − 1 SStr/ (r − 1) MSTr/MSE
Error SSE n− r SSE/ (n− r)
Total SSTot n− 1
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Part II

Classical Multifactor Data Analysis: Regression and

Factorial Analyses

23 Simple Linear Regression (SLR) Introduction- Least Squares,
the Sample Correlation, R2, and Residuals

(Text Reference/Reading: V&J Section 4.1)

We now begin to consider quantifying how a mean response changes with values of one or more
explanatory variables. We start with the simplest possible case, that where there is a single quanti-
tative factor/variable (call it x) and the relationship between x and the response y is approximately
linear. To be more explicit, we assume that n data pairs (x1, y1) , (x2, y2) , . . . , (xn, yn) provide
information on an approximate relationship

y ≈ β0 + β1x

(Plotting of the n data pairs is the obvious place to begin data analysis, determining that approxi-
mate linearity is an appropriate description of the relationship.)
The classical method of using the n data pairs to choose a slope and intercept to represent a

relationship between x and y is to employ the least squares criterion. This means choosing β0

and β1 to minimize the quadratic function of two variables

S (β0, β1) =

n∑
i=1

(yi − (β0 + β1xi))
2

Provided the xi are not all the same, setting partial derivatives of S (β0, β1) equal to 0 and solving
for β0 and β1 produces the "least squares coeffi cients"

b1 =

∑n
i=1 (yi − ȳ) (xi − x̄)∑n

i=1 (xi − x̄)
2

(the slope) and
b0 = ȳ − b1x̄

(the intercept). Then (using ŷ to stand for the fitted or predicted response) the equation of the
least squares line is

ŷ = b0 + b1x

and we write
ŷi = b0 + b1xi

for the value of fitted or predicted y for the ith data case.
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It is useful to have measures of how well a fitted line does at describing the n data pairs (xi, yi).
One such measure is the sample correlation between x and y. This is

r =

∑n
i=1 (yi − ȳ) (xi − x̄)√√√√ n∑

i=1

(xi − x̄)
2 ·

n∑
i=1

(yi − ȳ)
2

As it turns out, −1 ≤ r ≤ 1 and |r| = 1 exactly when all plotted points (xi, yi) fall on a single
straight line. The case r = 1 is the case where the line has a positive slope and the the case r = −1
is the case where the line has a negative slope.
Another measure of strength of apparent linear relationship is the so-called "coeffi cient of de-

termination." This is

R2 =

∑n
i=1 (yi − ȳ)

2 −
∑n
i=1 (yi − ŷi)2∑n

i=1 (yi − ȳ)
2

that has an interpretation as "the fraction of the raw variation in y accounted for using the (linear
in x) prediction equation." This can be expressed in other notation using the sums of squares

SSTot =

n∑
i=1

(yi − ȳ)
2

SSE =

n∑
i=1

(yi − ŷi)2 , and

SSR = SSTot− SSE (14)

and then

R2 =
SSR

SSTot

As it turns out, R2 also has an interpretation as a squared sample correlation. It is the squared
correlation between y and ŷ. (Further, since ŷ and x are perfectly correlated, R2 is also the squared
sample correlation between x and y in this simple case. This last interpretation is one that is special
to the present single-explanatory-variable case.)
There is also a notion of "residuals" for the least squares fitting of the line. That is, the residuals

in this context are values
ei = yi − ŷi (15)

(the sum of whose squares make up SSE). These can be plotted and interpreted in the same kinds
of ways that were indicated in Section 20 of this outline for residuals in the one-way model.
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24 The Normal Simple Linear Regression Model and Infer-
ence for σ

(Text Reference/Reading: V&J Section 9.1.1)

The one-way normal model (9) imposes no restrictions on the means µi. Inference for ap-
proximately linear relationships between x and y employ a specialization of the basic "independent
normal observations with a common variance" assumptions of Section 20. That is, we now adopt
the assumption that the mean value for y is linear in x. This can be written as

µy|x = β0 + β1x (16)

A complete specification of the "normal simple linear regression model" is then that for i =
1, 2, . . . , n

yi = β0 + β1xi + εi (17)

for iid N
(
0, σ2

)
random "errors" εi. (Model statement (17) is, of course, exactly parallel to the

less restrictive statement (9). The present model has 3 parameters, β0, β1, and σ. The earlier one
had r + 1 parameters, µ1, µ2, . . . , µr, and σ.)
An estimate of σ can be built from SSE. That is, a line-fitting sample variance is

s2
LF =

1

n− 2
SSE =

1

n− 2

n∑
i=1

(yi − ŷi)2

and the corresponding line-fitting sample standard deviation is

sLF =
√
s2
LF

This can, in turn, be used to make confidence limits for σ in the normal simple linear regression
model. Under model (17), values

sLF

√
n− 2

U
and/or sLF

√
n− 2

L

for U and/or L small (upper and/or lower) χ2
n−2 percentage points serve as confidence limits for σ.
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25 Inference for the SLR Slope β1 and Mean y at a Given x,
Prediction of ynew at x, and Standardized Residuals

(Text Reference/Reading: V&J Sections 9.1.2-9.1.4)

The parameter β1 in the simple linear regression model (17) represents the rate of change of mean
y with respect to x and thus measures the impact that changes in x have on the mean response.
Inference for it is an important part of a typical simple linear regression analysis. Confidence
intervals for β1 can be made using one or both of the endpoints

b1 ± t
sLF√∑n

i=1 (xi − x̄)
2

for t a small upper percentage point of the t distribution with ν = n−2 degrees of freedom. Further,
the hypothesis H0:β1 = # can be tested using the test statistic

T =
b1 −#
sLF√∑n

i=1 (xi − x̄)
2

and a tn−2 reference distribution. Note that under the SLR model, if β1 = 0, the mean response
doesn’t change with x. So testing H0:β1 = 0 is a way of addressing the question of whether x has
a discernible impact on the value of mean y. (Other common language is that of asking whether
"x is of any use in ‘explaining’or ‘predicting’y.")
The quantity µy|x = β0 + β1x first defined in display (16) is another important object in most

SLR analyses. For a given input value x, this is the average "system response." Confidence
intervals for it can be made using one or both of the endpoints

ŷ ± tsLF

√
1

n
+

(x− x̄)
2∑n

i=1 (xi − x̄)
2

for t a small upper percentage point of the t distribution with ν = n−2 degrees of freedom. Further,
the hypothesis H0:µy|x = # can be tested using the test statistic

T =
ŷ −#

sLF

√
1

n
+

(x− x̄)
2∑n

i=1 (xi − x̄)
2

and a tn−2 reference distribution. Note, by the way, that the case of x = 0 provides inferences for
β0, the intercept in the SLR model. Further, one intuitively plausible implication of this formula
is that most is known (limits for mean y are tightest) at x = x̄ (where the final term under the root
is 0).
Simple linear regression has its own form of prediction intervals, aiming to capture a new value

of the response, ynew , for a particular value of the input, x. These, like the one-sample prediction
limits of Section 14 of this outline, are related to confidence limits for a mean response by the
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"addition of 1 under a square root." That is, prediction intervals for ynew at x can be made using
one or both of the endpoints

ŷ ± tsLF

√
1 +

1

n
+

(x− x̄)
2∑n

i=1 (xi − x̄)
2

for t a small upper percentage point of the t distribution with ν = n− 2 degrees of freedom.
While plotting with SLR residuals ei = yi− ŷi is possible, it is common to correct them for their

lack of a common variance and plot instead with standardized residuals

e∗i =
ei

sLF

√
1− 1

n
− (xi − x̄)

2∑n
i=1 (xi − x̄)

2
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26 ANOVA and SLR

(Text Reference/Reading: V&J Section 9.1.5)

The definition of R2 in terms of sums of squares already begins to hint that there is a form of
analysis of variance associated with SLR much like that seen in Section 22. As there, we begin
with an F test of the hypothesis that all mean responses are the same. In the SLR context, that
is the hypothesis H0:β1 = 0. We’ve already noted that a t test of this is possible. Here we note
that with a two-sided alternative hypothesis, one may use a test statistic

F =
SSR/1

SSE/ (n− 2)

and an F1,n−2 reference distribution. (Two-sided p-values are right tail areas beyond the observed
value of this statistic.)
Rearranging the definition (14) one has an ANOVA identity appropriate to SLR

SSTot = SSR+ SSE

And the computation of the F statistic can be summarized (and the partitioning of SSTot appro-
priate to SLR presented) in an ANOVA table. The general version of this for SLR is presented in
Table 4.

Table 4: General Form of the ANOVA Table for Simple Linear Regression

ANOVA Table for Testing H0:β1 = 0

Source SS df MS F
Regression (on x) SSR 1 SSR/1 MSR/MSE
Error SSE n− 2 SSE/ (n− 2)
Total SSTot n− 1

As it turns out, the F statistic for testing H0:β1 = 0 is the square of the t statistic for the
hypothesis, and the p-values produced (for a two-sided alternative hypothesis) are the same.
The organization provided by Table 4 provides intuition about what is being said by (x1, y1) , (x2, y2) ,

. . . , (xn, yn). Large observed F correspond to large SSR, and in turn to large R2. The table entry
SSE/ (n− 2) is exactly s2

LF and is a "mean squared error." SSTot and degrees of freedom n− 1
are partitioned according to sources "explained" and "left over."
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27 Multiple Linear Regression (MLR) Introduction- Least
Squares, R2, Residuals, the MLR Model, and Inference
for σ2

(Text Reference/Reading: V&J Sections 4.2,9.2.1&9.2.5)

"Multiple Linear Regression" is in many ways the natural extension of the simple linear
regression material just presented. To begin, the basic data available for analysis are n vectors (of
dimension k + 1)

(x11, x21, . . . . , xk1, y1) , (x12, x22, . . . . , xk2, y2) , . . . , (x1n, x2n, . . . . , xkn, yn)

The approximate relationship between the input/predictor/explanatory variables/(quantitative)
factors xj (for j = 1, 2, . . . , k) employed in this methodology is the linear form

y ≈ β0 + β1x1 + β2x2 + · · ·+ βkxk

Using least squares and the n data vectors to find appropriate values of β0, β1, β2, . . . , βk means
choosing β0 through βk to minimize the quadratic function of k + 1 variables

S (β0, β1, β2, . . . , βk) =

n∑
i=1

(yi − (β0 + β1x1i + · · ·+ βkxki))
2

The set of k + 1 equations

∂

∂l
S (β0, β1, β2, . . . , βk) = 0 for l = 0, 1, 2, . . . , k

is called the set of normal (perpendicular) equations and can typically be solved uniquely for k+ 1
minimizing (least squares) coeffi cients

b0, b1, b2, . . . , bk

There are no simple formulas for these (unless matrix notation is used, something that will not be
done in Stat 587), but it is easy enough to get any decent statistical package to provide these fitted
coeffi cients.
Using the notation

ŷ = b0 + b1x1 + b2x2 + · · ·+ bkxk (18)

and in particular
ŷi = b0 + b1x1i + b2x2i + · · ·+ bkxki ,

the MLR version of "SSE" looks just like the SLR version, namely

SSE =

n∑
i=1

(yi − ŷi)2 .

Then, since

SSTot =

n∑
i=1

(yi − ȳ)
2
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has nothing to do with what approximate relationship between y and a set of explanatory factors
is under discussion, the obvious regression sum of squares for MLR is just as for SLR,

SSR = SSTot− SSE

Then (as in SLR) the fraction of raw variability accounted for by the fitted (multiple linear regres-
sion) equation (18) is

R2 =
SSR

SSTot

As in SLR, this also turns out to be a squared sample correlation between y and ŷ (but has no
interpretation as a squared correlation between y and any individual predictor, xj).
MLR residuals have the same form as SLR residuals, namely

ei = yi − ŷi (19)

and their plotting is possible, though typically standardized versions based on a generalization of
the normal SLR model are employed.
The normal multiple linear regressionmodel is another specialization of the one-way normal

model (9). It generalizes the SLR model (17) by allowing the mean response to depend linearly on
k explanatory variables (rather than just one). That is, it is built on the assumption that

µy|x1,x2,...,xk = β0 + β1x1 + β2x2 + · · ·+ βkxk (20)

(Notice that when all but one of β1, β2, . . . , βk are 0, relationship (20) reduces to the SLR assumption
(16).) A complete specification of the "normal multiple linear regression model" is then that for
i = 1, 2, . . . , n and (known/fixed) input vectors xi = (x1i, x2i, . . . . , xki)

yi = β0 + β1x1i + β2x2i + · · ·+ βkxki + εi (21)

for iid N
(
0, σ2

)
random "errors" εi. (Model statement (21) is, of course, a generalization of the

SLR model (17).) The present model has k + 2 parameters, β0, β1, β2, . . . , βk and σ. β0 is an
intercept. β1, β2, . . . , βk are rates of change in mean y with respect to a single predictor with all
others held fixed. The standard deviation, σ, governs how much variation is seen in response when
all predictors are held fixed.
An estimate of σ can be built from SSE. That is, a surface-fitting sample variance is

s2
SF =

1

n− (k + 1)
SSE =

1

n− k − 1

n∑
i=1

(yi − ŷi)2

and the corresponding surface-fitting sample standard deviation is

sSF =
√
s2
SF

This can, in turn, be used to make confidence limits for σ in the normal multiple linear regression
model. Under model (21), values

sSF

√
n− k − 1

U
and/or sSF

√
n− k − 1

L

for U and/or L small (upper and/or lower) χ2
n−k−1 percentage points serve as confidence limits for

σ.
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28 Inference for the MLRCoeffi cients βl andMean y at a Set
of Values x1, x2, . . . , xk, Prediction of ynew at x1, x2, . . . , xk,
and Standardized Residuals

(Text Reference/Reading: V&J Sections 9.2.1-9.2.4)

Continuing with material parallel to that presented for SLR, consider estimation of individual
regression coeffi cients βl. As it turns out, there is a standard error (estimated standard deviation)
for bl that we will call "sebl" and is a multiple of sSF . (The multiple depends upon the data only
through the values of the (x1i, x2i, . . . , xki) in the dataset.) There is no simple formula for sebl
(unless one is willing to use matrix notation). In particular, no "by hand" formula from SLR
is relevant here! But MLR programs will compute and print out numerical values for these
standard errors and it is possible to argue that under the normal MLR model the random variable

T =
bl − βl
sebl

has a tn−k−1 distribution. This in turn implies that one or both of the values

bl ± t · sebl

(for t a small upper percentage point of the tn−k−1 distribution) can be used to make a confidence
interval for βl. Further, the hypothesis H0:βl = # can be tested using the statistic

T =
bl −#

sebl

and a tn−k−1 reference distribution. (The case of # = 0 is most common, as the corresponding
hypothesis implies that µy|x1,x2,...,xk doesn’t depend upon xl.)

It is also possible to identify a standard error for ŷ that is a multiple of sSF . (The multiplier
again depends upon the data only through the values of the (x1i, x2i, . . . , xki) in the dataset.) We
will call this "seŷ" and recognize that while there is no simple formula for it, MLR programs will
compute it and print it out. It is possible to argue that under the normal MLR model the random
variable

T =
ŷ − µy|x1,x2,...,xk

seŷ

has a tn−k−1 distribution. This in turn implies that one or both of the values

ŷ ± t · seŷ

(for t a small upper percentage point of the tn−k−1 distribution) can be used to make a confidence
interval for µy|x1,x2,...,xk . Further, the hypothesis H0:µy|x1,x2,...,xk = # can be tested using the
statistic

T =
ŷ −#

seŷ

and a tn−k−1 reference distribution. As for SLR, the choice of x1 = 0, x2 = 0, . . . , xk = 0 provides
inference methods for the intercept, β0.
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The standard error for ŷ can also be used to produce prediction limits for ynew at x1, x2, . . . ,
xk. It is the case that

T =
ŷ − ynew√
s2
SF + se2ŷ

has a tn−k−1 distribution. This in turn implies that one or both of the values

ŷ ± t
√
s2
SF + se2ŷ

(for t a small upper percentage point of the tn−k−1 distribution) can be used to make a prediction
interval for ynew at x1, x2, . . . , xk.
It also turns out that the standard error for ŷi is helpful in producing standardized residuals

for the normal MLR model. That is, corresponding to the MLR residuals (19) are standardized
residuals

e∗i =
ei√

s2
SF − se2ŷi

that correct the residuals by giving them a common variance. Plotting these (expecting approximately-
standard-normal behavior if the normal MLR model is appropriate) is an improvement over the
plotting of ordinary residuals. Most MLR programs will produce them more or less automatically.
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29 MLR and ANOVA-Overall/Full and Partial F Tests

(Text Reference/Reading: V&J Section 9.2.5)

MLR has its ANOVA methodology and corresponding intuition and F tests. There are both
an "overall" F test and potentially many "partial" F tests (and associated breakdowns of SSTot).
We begin with the overall ANOVA and test.
In a manner parallel to that met in Section 26, the hypothesis that all of the "slopes" βl are 0

is the hypothesis that mean y doesn’t change with any of the explanatory variables. That is, in
the MLR model, H0:β1 = β2 = · · · = βk = 0 is the hypothesis that mean y is constant at β0. This
hypothesis can be tested using the statistic

F =
SSR/k

SSE/ (n− k − 1)

and an Fk,(n−k−1) reference distribution. Where SSR is large (and thus, SSE is small), R2 is
large and the fitted linear equation is interpreted as accounting for much of the observed variation
in y, so upper tail areas beyond an observed value for F are used as p-values. This test can be
thought of as providing an "observed significance level" for R2, in that

F =
R2/k

(1−R2) / (n− k − 1)

The computation of the overall F statistic can be summarized (and the partitioning of SSTot
appropriate to MLR presented) in an ANOVA table. The general version of this for MLR is
presented in Table 5.

Table 5: General Form of the ANOVA Table for Mulitple Linear Regression

ANOVA Table for Testing H0:β1 = β2 = · · · = βk = 0

Source SS df MS F
Regression (on x1, x2, . . . , xk) SSR k SSR/k MSR/MSE
Error SSE n− k − 1 SSE/ (n− k − 1)
Total SSTot n− 1

The table entry SSE/ (n− k − 1) is exactly s2
SF and is the "mean squared error" for MLR.

SSTot and degrees of freedom n − 1 are partitioned according to sources "explained" and "left
over" in the fitting of the MLR equation.
The overall F test and associated ANOVA concerns the question of whether anywhere in the

set of explanatory variables there is some help in accounting for variation in response. A differ-
ent question is whether after accounting for the explanatory contributions of several factors, the
remaining ones provide any detectable additional ability to model the response, y. Equivalently, the
question can be phrased as to whether the second set of predictors may be dropped from the full
MLR model without statistically detectable degradation in one’s ability to account for changes in
mean response.
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A very effective way of thinking about this problem is in terms of the "full" model with k
predictor variables and a "reduced model" with some number, say p, fewer predictors. (The
reduced model then has k − p explanatory variables.) A test of

H0:all p values βl corresponding to variables xl not in the reduced model are 0 (22)

can be based on SSR from two regressions. That is, if SSRfull is produced by MLR on all k
predictors and SSRreduced is produced by MLR on the subset of k − p predictors in the reduced
model, then a "partial F test" of hypothesis (22) can be based on the statistic

F =
(SSRfull − SSRreduced) /p

SSEfull/ (n− k − 1)

=
(SSEreduced − SSEfull) /p
SSEfull/ (n− k − 1)

and an Fp,(n−k−1) reference distribution. p-values are right tail areas beyond the observed value
of F . This can be thought of in terms of judging the statistical significance of the increase in R2

provided by moving from the reduced to the full model and the test statistic has the representation
in terms of R2 values as

F =

(
R2
full −R2

reduced

)
/p

(1−R2
full) / (n− k − 1)

The computation of the partial F statistic can be summarized in (and additional intuition
provided by) an ANOVA table. The appropriate expansion of Table 5 is presented as Table 6.

Table 6: ANOVA Table for Mulitple Linear Regression Partial F Test

ANOVA Table for Testing H0:all values βl corresponding to variables xl not in the reduced model are 0

Source SS df MS F
Regression (full) SSRf k

Regression (reduced) SSRr k − p
Regression (full|reduced) SSRf − SSRr p (SSRf − SSRr) /p MSRf|r/MSEf

Error SSEf n− k − 1 SSEf/ (n− k − 1)
Total SSTot n− 1
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30 Some Issues of Interpretation/Use of MLR Inferences

(Text Reference/Reading: V&J Sections 4.2.2,4.2.3,9.2.5)

MLR is a powerful technology. It is also frequently misunderstood/misused by naive analysts.
We here make some comments aimed at warning users away from common misinterpretations.
For one thing, it is tempting to treat a coeffi cient βl (or its estimate bl) as "the" effect of xl on

y and to correspondingly treat a large p-value for H0:βl = 0 as evidence that "xl is of no use in
accounting for changes in mean y." But the situation is far mode subtle than that simple phrase
suggests.
It is, for example, quite possible to have large p-values for testing both

H0:β1 = 0 and H0:β2 = 0

in a 2-variable MLR model including x1 and x2, and at the same time have small p-values for
testing H0:β1 = 0 in SLR on x1 and H0:β2 = 0 in SLR on x2. This not inconsistent. The large
p-values are indicative that in the presence of the other variable, the variable in question doesn’t
add significantly to the ability to model changes in y. The small p-values say that if all one has is
one of the 2 predictors, it cannot be discarded as useless in predicting y.
The kind of circumstance under which this can occur is one of "multi-collinearity." This is the

case where one or more approximate linear relationships exist among the predictors x1, x2, . . . , xk
(a situation where the points (x1i, x2i, . . . , xki) are nearly confined to some hyperplane in <k of
dimension lower than k). Consider, for example, a case where x1i ≈ x2i for all i. Here, if y is
approximately linearly related to x1, it is equally approximately related to x2. But both variables
are not needed in order to model changes in y. Only one or the other is required. – Where there
are important sample correlations between predictors, there is multi-collinearity, and it is impossible
to cleanly separate the impacts of the various explanatory variables on the mean response.
It is also important to remember that MLR employs exactly the form (20). It is perfectly

possible that instead of a form linear in an xl, something more complicated is needed to describe
its relationship to mean y. y might not be linearly related to xl, but for example be related to
a quadratic or a sinusoidal function of xl. So strictly speaking, inferences about βl concern only
linear effects of xl.
Where a MLR model does fit a dataset (e.g. as measured by a large value of R2) it is important

to emphasize that what has been established is a predictive relationship, not necessarily a causal
relationship. The former is a computational fitting matter. The latter concerns physical/real world
considerations. And examples abound making it plainly silly to naively assume that "correlation
is causation."
Finally, it is important to say that strictly speaking, one really only learns about how y is

related to predictors at those points (x1i, x2i, . . . , xki) ∈ <k where one has data. Anything else is
really an extrapolation. While using a fitted equation to make extrapolations is common and often
practically useful, it is justified only on the basis of subject matter considerations outside the kind of
purely mathematical and computational ones described in this outline. One must have substantive
reasons to believe that the kind of relationship between explanatory variables and mean response
seen in the dataset analyzed will extend to points at which one hopes to extrapolate.
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31 Some Qualitative Issues/Considerations in BuildingMod-
els and Predictors for y (Using MLR or Other Methods)

(Text Reference/Reading: V&J Sections 4.1.3&4.2)

Multiple linear regression opens formal discussion of the possibility of seeking functional forms
involving multiple explanatory factors to describe a response. The last part of 587 will be concerned
with methods beyond MLR that are especially helpful in predicting y from inputs x1, x2, . . . , xk
in "big data" situations where one or both of n (the number of data cases) and k (the number of
predictors/quantitative explanatory factors) are large. Whether "big data" or "small data" are
involved, whether the method is MLR or something else, there are some qualitative points to be
made that hold true across all efforts to find approximate relationship between k inputs and an
output or response, y. Some of these are the subject of this section.

Good multifactor statistical modeling provides fitted values ŷi (depending upon x1i, x2i, . . . . ,
xki) that effectively approximate observed values yi. Where full probability models are posited,
their assumptions need to be plausible (particularly where one is going to depend substantially
upon them for the making of prediction and tolerance intervals). In many (but not all) engineering
and physical science contexts, parameters of fitted models have important subject matter interpre-
tations and in those situations, it is important to search for models that are simple and facilitate
understanding of the roles of inputs in determining the response. And one hopes to not fail to
recognize the effects of important/helpful explanatory variables.
The plotting of residuals is a main tool in achieving these objectives. Normal plots of residuals

are helpful in examining "normal errors" model assumptions. Plots of residuals against explanatory
variables included in the modeling and against variables not employed in the modeling serve as tools
for identifying missed opportunities for improving model effectiveness. (In the simplest possible
case, where y depends in approximately quadratic fashion upon x, residuals from SLR plotted
against x will show a curved pattern. Or, where some variable not taken into account has a strong
linear effect on y, residuals plotted against it will show a linear trend.) Plots of residuals against
ŷ (and ones against the various predictor variables) can be helpful in spotting clear violations of
"constant error variance" model assumptions and "outlier" data vectors that simply do not fit with
the majority of the n in hand and need careful examination for potential special causes (including
things as simple as data-recording blunders).
It is clearly possible to start with a predictor x (or several predictors, x1, . . . , xk) and make

from it (from them) a new predictor by pugging them into some function. As a simple example,
one might start with a single predictor, x, and make from it several more predictors x2, x3, and x4.
Then applying MLR ideas to the predictors

x1 = x, x2 = x2, x3 = x3, and x4 = x4

one can fit the polynomial relationship

y ≈ β0 + β1x+ β2x
2 + β3x

3 + β4x
4

Or beginning from x1 and x2 one can make a new predictor x3 = x1x2 and use it in modeling And
so on.
In classical treatments of regression analysis, this idea of making new predictor variables from

existing ones is usually called making "transformations" of predictors. In modern predictive
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analytics/data mining contexts, it is often termed "feature engineering." Whatever it is called,
it greatly extends the usefulness of modeling methodologies by adding flexibility to the classes of
functions that can be fit to a set of n data vectors (x1i, x2i, . . . . , xki, yi).
Even beyond the notion of making fixed transformations of explanatory variables is the possi-

bility of using so called "smoothing" methods in large n contexts to more or less automatically
make from an explanatory variable (or several explanatory variables) a particularly effective new
explanatory variable. (This "automatic choice of a good transformation" is a topic for the end of
the course.)
The variety of ways that explicitly (because k one starts with is big) or implicitly (because it

is always possible to engineer "new" predictors from "old" ones) there are almost always many
potential predictors to employ in modeling a response makes it essential to consider the issue
of "overfitting" when assessing the quality of a fitted approximate relationship between y and
available explanatory variables. This is the possibility that a fitted relationship does a good job
of describing data in hand, but extrapolates very poorly. For example, one can essentially always
improve R2 (reduce SSE) by adding additional predictors to a MLR ... but that improvement may
actually substantially degrade the fitted relationship’s usefulness for predicting a new value of y.
The hard truth is this:

The likely effectiveness of a fitted relationship between explanatory variables and a
response for predicting response for a new case cannot be assessed by using it to predict
responses in the dataset used to make the fit. Rather, one must find a way to test a
fitted form on prediction for data not used in fitting that form.

A large value of R2/small residuals is not proof positive that a fitted form is really "any good." The
next section in this outline discusses an important methodology addressing this problem, so-called
"cross-validation."
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32 Assessing Prediction Performance by Cross-Validation

(Text Reference/Reading: JWH&T Section 5.1)

We have said that to reliably assess the likely effectiveness of a fitted form in prediction, one
must evaluate prediction performance on cases not used in fitting that model or predictor. The
best available technology for handling this truth is so-called K-fold cross-validation. The idea
is that one first randomly divides a dataset of size n into K sets of (as nearly as is possible) n/K
cases (that we will here call "folds"). Then for each fold, j, one fits the form of interest to all data
except cases in that fold. For purposes of fixing this idea, for an input vector x = (x1, x2, . . . , xk)

let f̂ j (x) be the predictor obtained by fitting to all cases except those in fold j. Then for all cases
i in fold j, the predicted value of response at xi = (x1i, x2i, . . . , xki),

f̂ j (xi) ,

is a prediction made based on fitting without case i. A version of an error sum of squares based
on cross-validation is then

CV SSE =

K∑
j=1

∑
i in fold j

(
yi − f̂ j (xi)

)2

and one might term
1

n
CV SSE = CVMSPE

a (cross-validation mean squared) "prediction error." A measure that is on the same scale as y is
the root mean squared prediction error

CV RMSPE =
√
CVMSPE

One can hope to reliably assess prediction effectiveness using this metric and thus be in a position
to reliably compare different possible fitted forms. Notice that while cross-validation is appropriate
for choosing between forms of predictors, once a choice has been made, fitting to the entire dataset
in hand is appropriate for purposes of post-fitting prediction.
A natural question is "What should K be?" Typically K in the 5 to 10 range is used. The case

K = n is the case where one-at-a-time, all data cases are withheld from fitting and their responses
predicted using all other cases. This is often called "leave one out" or LOO cross-validation.
While this possibility might seem most natural, there are good technical reasons why K = 10 is
more common and generally expected to be more reliable.
A second issue that arises is that since the value of CV RMSPE depends upon the random

result of splitting of cases into folds, when computationally feasible, it is common to repeat the
cross-validation multiple times and replace a single version of the prediction error with an average
of multiple values from different random splits into folds. The caret package in R is an effective
tool in implementing cross-validation and, in particular, repeated (and averaged) cross-validation.
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33 Logistic Regression (0/1 Responses)

(Text Reference/Reading: V&J Sections A.5.1&A.5.3 Example 19, Section 4.3 JWH&T)

This material concerns modeling and inference for a binomial success probability, p, that is a
function of one or more predictors x1, x2, . . . , xk. It is a kind of "regression" like MLR, but is
handled with a different methodology. The most common version of this modeling is that where
the log odds are taken to be linear in the predictors, i.e. where

ln

(
p

1− p

)
= β0 + β1x1 + β2x2 + · · ·+ βkxk

This is equivalent to a model assumption that

p =
exp (β0 + β1x1 + β2x2 + · · ·+ βkxk)

1 + exp (β0 + β1x1 + β2x2 + · · ·+ βkxk)
(23)

To aid understand the meaning of assumption (23), Figure 1 provides a plot of the "s-shaped"
function

p (u) =
exp (u)

1 + exp (u)

The assumption (23) says that the input values and parameters combine in linear fashion (as in
MLR) to produce the value u = β0 +β1x1 +β2x2 + · · ·+βkxk that gets translated into a probability
through p (u). In the case of k = 1, p (x) increases to the right when β1 > 0, decreases to the right
when β1 < 0, has a "steep" plot when |β1| is large, and is .5 exactly when β0 + β1x = 0, i.e. at
x = −β0/β1.

Figure 1: Basic Logistic Curve

We consider a model where for i = 1, 2, . . . , n independent binomial random variables yi have
corresponding success probabilities

pi = p (β0 + β1x1i + β2x2i + · · ·+ βkxki)

While all that follows can be easily generalized to cases where the numbers of trials for the yi
are larger than 1, for ease of exposition, we’ll suppose here that all yi are based on a single trial
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each. In this case, the joint pmf of the observables y1, y2, . . . , yn is the function of the parameters
β0, β1, . . . , βk

f (y1, y2, . . . , ym|β0, β1, . . . , βk) =

n∏
i=1

pyii (1− pi)1−yi

With observed values of the yi plugged into f , one has a function of the parameters only. The
logarithm of this is the so-called "log-likelihood function"

L (β) = ln

(
n∏
i=1

pyii (1− pi)1−yi

)
=
∑
i s.t.
yi=1

ln p (β0 + β1x1i + β2x2i + · · ·+ βkxki) +
∑
i s.t.
yi=1

ln (1− p (β0 + β1x1i + β2x2i + · · ·+ βkxki))

that is the basis of inference for the parameter vector β = (β0, β1, . . . , βk) and related quantities.
The parameter vector b = (b0, b1, . . . , bk) that optimizes (maximizes) L (β) is called the "maxi-

mum likelihood estimate" of β. Further, the shape of the log-likelihood function near the maximum
likelihood estimate (b) provides confidence regions for the parameter vector β and intervals for its
entries βl.
First, the set of parameter vectors β with "large" log-likelihood form a confidence set for β. In

fact, for U an upper percentage point of the χ2
m−k−1 distribution, those with

L (β) > L (b)− 1

2
U

(those β with log-likelihood within U/2 of the maximum possible value) form an approximate
confidence region (in <k+1) for β.

Second, the curvature of the log-likelihood function at the maximizer b provides standard errors
for the entries of b. That is, for

H
(k+1)×(k+1)

=

[
∂2

∂βi∂βj
L (β)

]∣∣∣∣
β=b

the "Hessian" matrix (the matrix of second partials of the log-likelihood at the maximizer b),
estimated variances of the entries of b can be obtained as diagonal entries of

−H−1

(the negative inverse Hessian). The square roots of these then serve as standard errors for the esti-
mated coeffi cients bl (values sebl) that get printed out by statistical systems like R. Corresponding
approximate confidence limits for βl are then

bl ± zsebl

Somewhat more reliable confidence limits can be produced by a more complicated/subtle method
and can be gotten from glm(). (One finds all values β∗l for which there is a β ∈ <k+1 with βl = β∗l
and L (β) > L (b)− 1

2U for U an upper percentage point of χ2
1.)

The value
û = b0 + b1x1 + b2x2 + · · ·+ bkxk
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(parallel to ŷ in display (18)) serves as a fitted log odds. The glm() package in R will produce
fitted values for the dataset (and for new vectors of inputs) and will also produce corresponding
standard errors. Call these seû. Then, approximate confidence limits for the log odds β0 + β1x1 +
β2x2 + · · ·+ βkxk are

û± z · seû
Simply inserting these limits into the function p (u) produces confidence limits for the success
probability at inputs x1, x2, . . . , xk, namely

p (û− z · seû) and p (û+ z · seû)

giving a way to see how much one knows about the success probabilities at various vectors of inputs.
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34 Non-Linear Regression

(Text Reference/Reading:)

We consider the generalization of multiple linear regression involving p predictor variables
x1, x2, . . . , xp and k (unknown) parameters β1, β2, . . . , βk (that, as convenient, we will assemble
into vectors x and β respectively). We assume that there is some known function f (x;β) that
provides the mean value of an observable variable, y, in terms of these. Then, as in MLR, we
assume that for independent mean 0 and variance σ2 normal variables εi, for i = 1, 2, . . . , n

yi = f (xi;β) + εi (24)

Notice that in model (24), exactly as in MLR, there is an assumption that for inputs x1, x2, . . . , xp
the distribution of y around the mean µy|x1,x2,...,xp = f (x;β) is normal with a standard deviation
σ that doesn’t depend upon the inputs. The innovation here (relative to MLR) is simply the
possibility that f (x;β) doesn’t have the MLR form β0 + β1x1 + β2x2 + · · · + βkxk. Particularly
in the physical sciences and engineering, theories (e.g. involving differential equations) and well-
established empirical relationships provide other favorite functional forms. Some of these forms
don’t even have explicit representations and are simply defined as "the solution to a system of
differential equations." This section is about how they can to some extent be handled statistically
in a way parallel to the handling of MLR.
First, there is the question of how to process n data vectors into estimates of the parameters σ

and β. Just as in MLR, one can use least squares, i.e. minimize

S (β) =

n∑
i=1

(yi − f (xi;β))
2

Conceptually, this is exactly as in MLR (except for the fact that the function S (β) is not a quadratic
function of β). Operationally (because S is not so simple) one must employ iterative algorithms to
search for an optimizer. In R one can use the nls() routine instead of the lm() routine. Further,
because statistical theory for the general model (24) is not as clean as for the special case of
MLR, only approximate methods of inference can be identified, and they are impossible to describe
completely at a Stat 587 level of background. What will be done in the balance of this section
is to try to give some understandable description of and motivation for what is possible and is
implemented in good statistical packages.
So, without getting into the numerical details of exactly what algorithms are used to locate it,

suppose that b is an optimizer of S (β), that is

S (b) = min
β
S (β)

(b minimizes an "error sum of squares") and is an "ordinary least squares estimate" of β. Of
course, entries of b serve as estimates of the entries of β.
The (minimum) sum of squares corresponding to b, namely

SSE = S (b) =

n∑
i=1

(yi − f (xi; b))
2
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can (as in MLR) form a basis for estimating σ. In particular, a simple estimate of σ2 is

σ̂2 =
SSE

n− k

Simply carrying over ideas from MLR, very approximate confidence limits for σ are

σ̂

√
n− k
U

and σ̂

√
n− k
L

for U and L small upper and lower percentage points of the χ2
n−k distribution. More subtle methods

than this are available and are sometimes implemented in non-linear least squares software.
Confidence regions for locating the whole parameter vector β are sometimes of interest. Car-

rying over an idea from MLR (that wasn’t discussed in the context of MLR but does work there
exactly) one can use as a confidence region a set of parameters β for which S (β) is not much larger
than the minimum value, S (b). In particular, the set of parameters β for which

S (β) ≤ S (b)

(
1 +

k

n− kU
)

for U a small upper percentage point of the Fk,n−k distribution serves as an approximate confidence
region for β.
Standard errors for the bl can be obtained in much the same way as they are in logistic regression,

based on the curvature of an appropriate log-likelihood function (involving the inversion of a Hessian,
etc.). These values sebl are printed out on most non-linear regression outputs and approximate
confidence limits for βl are

bl ± tsebl
for t a small upper percentage point of the tn−k distribution.
More reliable approximate confidence limits for individual coeffi cients can be made via a method

related to the method for making confidence regions for β discussed above. That is, the set of
parameters β∗l for which there is a β ∈ <k with βl = β∗l and

S (β) ≤ S (b)

(
1 +

1

n− kU
)

for U a small upper percentage point of the F1,n−k distribution serves as an approximate confidence
region for βl. This method is sometimes implemented in non-linear regression programs as an
alternative to the t intervals.
It is also possible to make confidence limits for the mean response f (x;β), but no version of

this seems to be presently implemented in nls(). In particular, no standard errors for fits (the
seŷ) seem to be implemented at the moment. If they were, then approximate prediction limits for
a next y at a particular set of conditions would be

f (x; b)± t
√
σ̂2 + (seŷ)

2
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35 (Complete) Two-Way Factorial Analyses

(Text Reference/Reading: V&J Sections 4.3.1-4.3.2 and 8.1.1-8.1.3) (See also V&J SMQA Section
5.2)

We now begin to consider modeling and statistical analysis for circumstances where a mean
response potentially depends upon several factors which may not be quantitative in nature (and
thus MLR and its extensions are not obviously applicable). We begin with the simplest case,
where two factors, that we will here simply call "A" and "B," have respectively I and J possible
"levels" (these are different settings or values of the two factors), and a dataset has at least one
observation for each of the I ·J different combinations of a level of A with a level of B. This kind of
circumstance is called a complete (because no combinations lack data) two-way factorial context.
Typical data analysis here is supported by the usual one-way normal model (9) of Section

20 rewritten in a way that makes explicit the natural two-way structure in the r = IJ different
conditions under study. That is, with

yijk = the kth observation at level i of Factor A and level j of Factor B

for i = 1, . . . , I, j = 1 . . . , J, sample sizes nij , and k = 1, . . . , nij for each i, j pair, the model is

yijk = µij + εijk

for iid mean 0 variance σ2 random errors εijk and r = IJ means µij . (The model parameters are
the means and the single standard deviation.)
We will employ "dot subscript" notation for averages of various sample means and parameters.

That is, we let

ȳij =
1

nij

nij∑
k=1

yijk, ȳi. =
1

J

J∑
j=1

ȳij , ȳ.j =
1

I

I∑
i=1

ȳij , and ȳ.. =
1

IJ

I∑
i=1

J∑
j=1

ȳij

and

µi. =
1

J

J∑
j=1

µij , µj. =
1

I

I∑
i=1

µij , and µ.. =
1

IJ

I∑
i=1

J∑
j=1

µij

Sound understanding of patterns or structure in the mean responses µij can begin by making so-
called "interaction plots" of the sample means, ȳij . These are made by plotting ȳij against i (level
of Factor A) or against j (level of Factor B), connecting consecutive plotted means for a given j
in the first case or i in the second with line segments. These plots can be enhanced using "error
bars" around ȳij derived from confidence limits for µij ,

ȳij ± t
sP√
nij

It is also possible and important to define so-called (theoretical and fitted/estimated) "main
effects" for the factors individually and (theoretical and fitted/estimated) "two-factor interactions"
for the factors in a two-way factorial. The main effects for Factor A at level i are

αi = µi. − µ.. (model/theoretical) and ai = ȳi. − ȳ.. (fitted/estimated/empirical)
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The main effects for Factor B at level j are

βj = µ.j − µ.. (model/theoretical) and bj = ȳ.j − ȳ.. (fitted/estimated/empirical)

And the two-factor interactions for Factors A and B at combination i, j are

αβij = µij − (µ.. + αi + βj) (model/theoretical)

and abij = ȳij − (ȳ.. + ai + bj) (fitted/estimated/empirical)

Main effects measure the difference between level average means and an overall average mean.
Two-factor interactions measure differences between combination/cell means and what can be ac-
counted for in terms of an overall mean and main effects. These latter are a kind of measure
of "dependence of a factor’s effect upon the level of the other factor." When they are negligible,
"interaction plots" have a kind of parallelism property, whereby means plotted against level of (say)
A move up and down similarly for each level of (say) B.
A basic kind of inference available for main effects and two-factor interactions derives from the

fact that theoretical/model effects (main and interaction alike) are "L’s" (see display (10)) and
fitted/estimated effects are corresponding "L̂’s" (see display (11)) of Section 21. This means that
formula (12) gives confidence limits for αi’s, βj’s, and αβij’s. In addition, the same is then true
for differences in main effects, αi − αi′ = µi. − µi′. or βj − βj′ = µ.j − µ.j′ that measure differences
in level average mean responses. That is, for

L = a model effect or difference in main effects

one has
L̂ = the corresponding fitted effect or difference in fitted main effects

and confidence limits

L̂± tsP

√√√√∑
i,j

c2ij
nij

The only potential mystery is the value of the sum under the square root above. While this can be
worked out from first principles if one identifies the coeffi cients applied to each combination mean
in order to make L, Tables 8.3 and 8.4 on pages 556 and 557 of V&J give formulas for this sum in
both "balanced data" cases (where all nij are some common value m) and in general.
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36 MLR and Two-Way Factorial Analyses (and ANOVA)

(Text Reference/Reading: V&J Section 9.3.2)

In a way that is perhaps initially quite surprising, MLR enables more detailed analyses of 2-way
factorial data than what is provided in the previous section. That is built on a clever "coding"
idea that represents I levels of Factor A with I − 1 "dummy" variables and J levels of Factor B
with J − 1 other dummy variables and the facts that as defined in Section 35,

1. A main effects sum to 0,
∑I
i=1 αi = 0,

2. B main effects sum to 0,
∑J
j=1 βj = 0, and

3. AB two-factor interactions sum to 0 across levels of either factor,
∑J
j=1 αβij = 0 for each i

and
∑I
i=1 αβij = 0 for each j.

The basic idea is this. For i = 1, 2, . . . , I − 1 define

xAi =

 1 if the case is from level i of Factor A
−1 if the case is from level I of Factor A
0 otherwise

(25)

Similarly, for j = 1, 2, . . . , J − 1 define

xBj =

 1 if the case is from level j of Factor B
−1 if the case is from level J of Factor B
0 otherwise

(26)

Then as it turns out, in a MLR mean expression including all I − 1 "predictors" xAi , all J − 1
"predictors" xBj , and all (I − 1) (J − 1) "product predictors" xAi x

B
j (including therefore IJ − 1

"predictors" overall) each µij has a different representation in terms of the regression coeffi cients
(the βl’s). Further,

1. the "intercept" "β0" is in fact µ..,

2. each regression coeffi cient "βl" corresponding to an xAi is the corresponding main effect αi as
defined in Section 35,

3. each regression coeffi cient "βl" corresponding to an xBj is the corresponding main effect βj as
defined in Section 35, and

4. each regression coeffi cient "βl" corresponding to a product xAi x
B
j is the corresponding two-

factor interaction αβij as defined in Section 35.

(This is illustrated in explicit terms for the 3× 3 case in Section 9.3.2 of V&J.)
So, one can do two-factor factorial inference (including estimation of the main effects and inter-

actions) using (either explicitly or behind the scenes) MLR computations. This includes the kind of
estimation of effects and differences in main effects considered in the previous section. But beyond
this, there is the possibility of considerations based on "reduced" models (where interactions and

68



perhaps one kind of main effects are all 0). Some of the things that can be done are the subject of
the rest of this section.
The hypothesis that there are no interactions in a two-way set of means, H0:all αβij = 0, can

be phrased in MLR terms as H0:all "βl" corresponding to products xAi x
B
j are 0, and tested using

the "full model/reduced model" paradigm employing the statistic

F =

(
SSR

(
all xAi ,all x

B
j , all x

A
i x

B
j

)
− SSR

(
all xAi ,all x

B
j

))
/ (I − 1) (J − 1)

SSE
(
all xAi ,all x

B
j , all x

A
i x

B
j

)
/ (n− IJ)

with an F(I−1)(J−1),(n−IJ) reference distribution. (Notice that the null hypothesis here is that
µij = µ.. +αi + βj for all i, j, i.e. that a "no interactions model" describes the influence of the two
factors on the mean response.)
Similarly, the hypothesis that there are no interactions and no B main effects, H0:all αβij = 0

and all βj = 0, can be phrased in MLR terms as H0:all "βl" corresponding to xBj and to products
xAi x

B
j are 0, and tested using the "full model/reduced model" paradigm employing the statistic

F =

(
SSR

(
all xAi ,all x

B
j , all x

A
i x

B
j

)
− SSR

(
all xAi

))
/I (J − 1)

SSE
(
all xAi ,all x

B
j , all x

A
i x

B
j

)
/ (n− IJ)

with an FI(J−1),(n−IJ) reference distribution. (The null hypothesis here is that µij = µ.. + αi for
all i and j, i.e. that an "A main effects only model" describes the influence of the two factors on
the mean response.)
These tests, ANOVA tables that summarize them, and the sums of squares that they are built

on are typically output automatically by "ANOVA" or factorial analysis routines (without any
requirement that a user actually set up the dummy variables that stand behind them). But there
are some subtleties that must be understood when using these.
When two-way full factorial data are balanced (all nij are the same)

SSR
(
all xAi

)
= SSR

(
all xAi |all xBj

)
= SSR

(
all xAi |all xAi xBj

)
= SSR

(
all xAi |all xBj , all xAi xBj

)
and

SSR
(
all xBj

)
= SSR

(
all xBj |all xAi

)
= SSR

(
all xBj |all xAi xBj

)
= SSR

(
all xBj |all xAi , all xAi xBj

)
and

SSR
(
all xAi x

B
j

)
= SSR

(
all xAi x

B
j |all xAi

)
= SSR

(
all xAi x

B
j |all xBj

)
= SSR

(
all xAi x

B
j |all xAi , all xBj

)
In this context, it then makes sense to write

SSA = SSR
(
all xAi

)
SSB = SSR

(
all xBj

)
SSAB = SSR

(
all xAi x

B
j

)
and have

SSA+ SSB + SSAB = SSTr

That is, there are natural meanings for "A," "B," and "AB" components of the "treatment" sum
of squares from a one-way analysis of the r = IJ samples, providing entries in an ANOVA table
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like Table 7. The F statistics in this table provide tests for hypotheses that there are no differences
among the IJ means, all A main effects are all 0, all B main effects are 0, and all AB interactions
are 0 in the "full model" (that allows all combinations to have completely unconstrained values for
mean responses).

Table 7: Form of the ANOVA Table for a Two-Way Complete Factorial Analysis

Source SS df MS F
Treatments SSTr IJ − 1 SSTr/ (IJ − 1) MSTr/MSE
A SSA I − 1 SSA/ (I − 1) MSA/MSE
B SSB J − 1 SSB/ (J − 1) MSB/MSE
A×B SSAB (I − 1) (J − 1) SSAB/ (I − 1) (J − 1) MSAB/MSE

Error SSE n− IJ SSE/ (n− IJ)
Total SSTot n− 1

Where two-way factorial data are not balanced, there is no one obvious partition of SSTr
into parts uniquely attributable separately to the two factors and their interactions. One possible
partition is

SSTr = SSR
(
all xAi

)
+
(
SSR

(
all xAi ,all x

B
j

)
− SSR

(
all xAi

))
+
(
SSR

(
all xAi ,all x

B
j , all x

A
i x

B
j

)
− SSR

(
all xAi ,all x

B
j

))
and when factors are entered in the call of an ANOVA routine in the order "A first and then B"
typically the routine will report and ANOVA table using this partition

"SSA" = SSR
(
all xAi

)
"SSB" = SSR

(
all xAi ,all x

B
j

)
− SSR

(
all xAi

)
"SSAB" = SSR

(
all xAi ,all x

B
j , all x

A
i x

B
j

)
− SSR

(
all xAi ,all x

B
j

)
Notice that only the last of these is an appropriate numerator sum of squares for testing an hypoth-
esis in the full model and that what are reported as "SSA" and "SSB" will typically be different if
the factors are entered in the call of the ANOVA routine in the order "B first and then A." So, in
fact, treating a two-way factorial in MLR terms provides the most transparency and control over
exactly what is being portrayed in a data analysis.
Subtleties/complications of interpretation introduced into two-way factorial analysis by lack of

balance in a dataset extend beyond sums of squares and F tests, to values for fitted effects and
predicted values for reduced models (ones that don’t include all IJ − 1 predictors and thus impose
constraints on the µij). That is, considering the three sets of predictors

"all xAi ," "all x
B
j ," and "all x

A
i x

B
j "

the full model includes all three sets, but reduced models can be built using only one or two. For
balanced data cases MLR fits of the reduced models all produce

1. estimated coeffi cients agreeing with corresponding ones produced in a fit of the full model
(and thus equal to the fitted effects defined in Section 35), and then
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2. predicted responses (fitted means) that are sums of the relevant fitted effects defined in Section
35.

But where two-way factorial data are not balanced, these simplifications do not hold. Es-
timates of "βl"’s depend upon which model is being fit (what "other" types of predictors are being
considered) and while "ŷ" values are what they always are in MLR, for reduced models they are
typically not simply sums of the fitted effects defined in Section 35.
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37 Complete p Factor Factorial Studies (Generalities)

(Text Reference/Reading: V&J Sections 4.3.3-4.3.4, 8.2.1-8.2.2&9.3.2) (See also V&J SMQA Sec-
tion 5.3.1)

p-way complete factorial studies consist of at least 1 observation at every combination of levels
of p different factors. The ideas of the previous two sections generalize to cover analysis of these
data structures, after one makes sensible definitions of factorial effects in these p-factor contexts.
In this section we treat the factorial analysis problem, using the p = 3 case as the focus of discussion
and simply alluding to how the ideas must generalize to p > 3.
So suppose that 3 factors that we will here call "A," "B," and "C," have respectively I, J, and

K possible levels and that a dataset has at least one observation for each of the I · J ·K different
combinations of a level of A with a level of B with a level of C. As for the two-way factorial
situation, typical data analysis here is supported by the one-way normal model (9) of Section 20
rewritten in a way that makes explicit the natural factorial structure in the r = IJK different
conditions under study. Here, with

yijkl = the lth observation at level i of Factor A, level j of Factor B, and level k of Factor C

for i = 1, . . . , I, j = 1 . . . , J, k = 1, . . . ,K, sample sizes nijk, and l = 1, . . . , nijk for each i, j, k triple,
the model is

yijkl = µijk + εijkl (27)

for iid mean 0 variance σ2 random errors εijkl and r = IJK means µijk. (The model parameters
are the r = IJK means and the single standard deviation, and an additional subscript beyond the
3 of the previous two sections is required to describe p = 3 datasets.)
We continue to employ "dot subscript" notation for averages of means, so that

µij. =
1

K

K∑
k=1

µijk, µi.k =
1

J

J∑
j=1

µijk, µ.jk =
1

I

I∑
i=1

µijk, µi.. =
1

JK

∑
j,k

µijk,

µ.j. =
1

IK

∑
i,k

µijk, µ..k =
1

IJ

∑
i,j

µijk, and µ... =
1

IJK

∑
i,j,k

µijk

Then, in analogy to the two-way case, main effects in a three-way factorial are differences between
average means at a level of a single factor of interest and the overall average mean,

αi = µi.. − µ...
βj = µ.j. − µ...
γk = µ..k − µ...

Two-way interactions are differences between average means at a combination of levels of two factors
of interest and what can be accounted for by the overall mean and the two corresponding main
effects,

αβij = µij. − (µ... + αi + βj)

αγik = µi.k − (µ... + αi + γk)

βγjk = µ.jk − (µ... + βj + γk)
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Finally, three-way interactions are differences between combination means and what can be ac-
counted for by the overall mean, main effects, and two-factor interactions

αβγijk = µijk − (µ... + αi + βj + γk + αβij + αγik + βγjk)

(In higher way factorials, interactions of a given order are differences between average means and
what can be accounted for by the overall mean, main effects, and interactions of order lower than
the ones being defined.) Typical data analysis in a three-way factorial then concerns determining
which of these effects are important and making subject matter interpretations.
In the next section we will consider factorial analyses where every factor has only 2 levels.

There, some very nice simplifications of formulas, notations, and interpretations are possible. Here
we say what can be done in general using the "coding in MLR" ideas of the last section.
Again defining dummy variables for Factors A and B as in displays (25) and (26), now define

as well dummy variables for Factor C. For k = 1, 2, . . . ,K − 1 let

xCk =

 1 if the case is from level k of Factor C
−1 if the case is from level K of Factor C
0 otherwise

(28)

Then a MLR version of the full model (27) includes all sets of predictors

"all xAi ," "all x
B
j ," "all x

C
k ," "all x

A
i x

B
j ," "all x

A
i x

C
k ," "all x

B
j x

C
k ," and "all x

A
i x

B
j x

C
k " (29)

and a regression coeffi cient "βl" corresponding to a dummy variable or product of dummy variables
for more than one factor is the corresponding factorial main effect or interaction. (Main effects and
interactions involving the "last" level of one or more factors are available as sums and differences
of others of the given type across levels of relevant factors, since by definition main effects and
interactions sum to 0 across levels of any factor referenced in the effect name.) While such
regressions can be set up "by hand" and the form of MLR output thereby carefully controlled by
an analyst, it is quite common to instead simply employ a factorial analysis/"ANOVA" routine
(with its pre-programmed choices of output format) to do computations. These routines effectively
create their own dummy variables and employ MLR computations in the background.
Many different partial F tests based on the full model/reduced model paradigm can be imple-

mented using the sets of predictors (29). In particular, F tests that all effects corresponding to a
single set are 0 in the full model (27) can be based on a full model regression involving all predictors
(29) and a reduced model where a single set is dropped from the list (29). Exactly what tests a
pre-programmed routine will by default enable is something that must be carefully determined by
a user.
As in the case of two-way factorial analyses, balanced data (where all combinations of levels

of the p factors have the same sample sizes) provide great conceptual simplifications. Where all
nijk in a 3-way study are the same, there is an obvious single sum of squares to associate with each
set of predictors in display (29). That is, whether or not any other set or sets of predictors from
the list is already included in a model for y, adding a particular set will increase the regression sum
of squares by the same amount. It thus makes sense to call that a sum of squares associated with
the set of effects. For example

SSR
(
"all xAi "

)
= SSR

(
"all xAi ," "all x

B
j ," and "all x

C
k "
)
− SSR

(
"all xBj " and "all x

C
k "
)

= · · ·
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so that it makes sense to call
SSA = SSR

(
"all xAi "

)
In this relatively simple situation, SSTr based on the one-way model (with r = IJK different
conditions) partitions naturally as

SSTr = SSA+ SSB + SSC + SSAB + SSAC + SSBC + SSABC

and this partition is typically shown in an ANOVA table along with degrees of freedom

df A = I − 1, df B = J − 1, df C = K − 1, df AB = (I − 1) (J − 1) , df AC = (I − 1) (K − 1) ,

df BC = (J − 1) (K − 1) , and df ABC = (I − 1) (J − 1) (K − 1)

Further, estimated effects (that are estimated regression coeffi cients "bl") for reduced models in-
cluding only some of the sets of predictors (29) are the same as those for the full model (27). So
there is no ambiguity regarding the apparent sizes of the factorial effects related to which other
effects are simultaneously considered.
Unbalanced factorial data have conceptually more diffi cult problems of interpretation. There

is no obvious single sum of squares to associate with a given set of predictors in display (29) in
p = 3 problems. The additional regression sum of squares provided by one of the sets depends
upon which other set or sets have already been accounted for (in a reduced model). So while it
is common for a factorial analysis routine to output some kind of an ANOVA table, exactly what
the sums of squares represent is not necessarily obvious and almost surely depends upon the order
factors are listed in when the call to the routine is made. (Typically different sums of squares
appear for different orders.) Exactly what full and reduced models are implicit in the form of the
ANOVA table must be carefully worked out by an analyst, who needs to be sure that he or she
has the correct raw material for whatever comparisons of models is of interest. And the estimated
effects provided by such a routine will also typically depend upon the user-specified ordering of the
factors. For example, there are thus no obvious "estimated B main effects," rather only "estimated
B main in the presence of XXX effects." A user must therefore be very careful and thoughtful in
interpreting what a routine provides for output for unbalanced factorial data.
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38 Special Methods for 2p Factorials

(Text Reference/Reading: V&J Sections 4.3.3-4.3.5 and 8.2.1-8.2.3) (See also V&J SMQA Section
5.3)

We now consider the special case of p-way factorial analysis where each of the p factors has only
2 levels – the so-called 2 × 2 × · · · × 2 or 2p studies. There are two reasons for giving special
attention to 2-level factors. The first is that there is special notation and structure that make their
analysis most transparent. The second is that as a practical matter, one can rarely afford p-factor
factorial experimentation with many (more than 2) levels of the factors. As we did in the previous
section, we’ll phrase the discussion mostly in terms of the p = 3 case, counting on the reader to
make the natural extensions to p > 3.
It is typical in 2p studies to make an arbitrary choice of one level of each factor as a first or

"low" level and the other level as the second or "high" level. Further, it is often useful employ
the "−" designator for the low level and the "+" designator for the high level. In addition it is
common to adopt a shorthand naming convention for the 2p different combinations that calls each
by a string of letters corresponding to those factors appearing in the combination at their 2nd or
high levels. Table 8 summarizes these notational conventions for index i indicating level of A,
index j indicating the level of B, and index k indicating the level of C. While the "ijk" notation
is perfectly general and could be applied to any I × J ×K factorial, the +/− notation used in the
table and the special "2p name" convention are special to the present case where every factor has
only 2 levels.

Table 8: Naming Convention for Combinations in a 2p Factorial
A B C 23 name i j k
− − − (1) 1 1 1
+ − − a 2 1 1
− + − b 1 2 1
+ + − ab 2 2 1
− − + c 1 1 2
+ − + ac 2 1 2
− + + bc 1 2 2
+ + + abc 2 2 2

It is often helpful for understanding the results of a 23 factorial study to plot the sample means
obtained on the corners of a cube as shown in Figure 2.
In a way consistent with the notation of the last few sections we’ll let

ȳijk =
1

nijk

nijk∑
l=1

yijkl, ȳij. =
1

K

K∑
k=1

ȳijk, ȳi.k =
1

J

J∑
j=1

ȳijk, ȳ.jk =
1

I

I∑
i=1

ȳijk,

ȳi.. =
1

JK

∑
j,k

ȳijk, ȳ.j. =
1

IK

∑
i,k

ȳijk, ȳ..k =
1

IJ

∑
i,j

ȳijk, and ȳ... =
1

IJK

∑
i,j,k

ȳijk

and note that there are fitted versions of the 23 factorial effects defined in the previous section that
can be defined in terms of these sample means. (These will agree exactly with what is produced
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Figure 2: Sample means from a 23 factorial

using all sets of dummy variables in display (29) in an MLR model. The point of providing the
formulas here is more for lending intuition about the problem than for recommending their use in
practice. In practice, either the MLR ideas or the so-called "Yates algorithm" is typically easier.)
That is, fitted main effects are

ai = ȳi.. − ȳ...
bj = ȳ.j. − ȳ...
ck = ȳ..k − ȳ...

These are "face average" sample means minus the grand average sample mean corresponding to
Figure 2. It is a consequence of their definitions that a1 = −a2, b1 = −b2, and c1 = −c2.
Fitted two-factor interactions are

abij = ȳij. − (ȳ... + ai + bj)

acik = ȳi.k − (ȳ... + ai + ck)

bcjk = ȳ.jk − (ȳ... + bj + ck)

These are what one would call two-factor interactions in a two-way dataset after collapsing the cube
in Figure 2 front-to-back, or top-to-bottom, or left-to-right by averaging. They represent what can
be explained about a response mean if one thinks of factors acting jointly in pairs beyond what is
explainable in terms of them acting separately. It is a consequence of their definitions that fitted
2-factor interactions add to 0 over levels of any one of the factors involved. In a 2p study, this
allows one to compute a single one of these fitted interactions of a given type and obtain the other
three by simple sign changes. For example

ab11 = −ab12 = −ab21 = ab22

(if the number of "index-switches" going from one set of indices to another is odd, the sign of the
fitted effect changes, while if the number is even there is no sign change).
Finally, fitted 3-factor interactions are

abcijk = ȳijk − (ȳ... + ai + bj + ck + abij + acik + bcjk)
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These measure the difference between what’s observed and what’s explainable in terms of factors
acting separately and in pairs on the response, y. They are also the difference between what one
would call 2 factor interactions between, say, A and B, looking separately at the various levels of C
(so that they are 0 exactly when the pattern of AB two factor interaction is the same for all levels
of C). These sum to 0 over all levels of any of the factors A, B, and C, so for a 2p factorial one
may compute one of these and get the others by appropriate sign changes.
In 2p studies, since by computing one fitted effect of each type, one has (via simple sign changes)

all of the fitted effects, it is common to call those for the "all factors at their high level" combination,
namely

a2, b2, ab22, c2, ac22, bc22, abc222, etc.

the fitted effects. And the Yates algorithm is a very effi cient method of computing these "by hand"
all at once. It consists of writing combinations and corresponding means down in "Yates standard
order" and then doing p cycles of additions and subtractions of pairs of values, followed by division
by 2p. It is illustrated in V&J Section 4.3.5, page 189.

Having computed fitted effects for a 2p factorial, there is a simple way of judging whether what
has been computed is really anything more than background noise/experimental variation. Just as
was the case for two-way factorials, each p-way factorial effect is an "L" (i.e. a linear combination
of the means µijk) and each fitted effect is the corresponding linear combination of sample means,
an "L̂" in the notation Section 21. Thus one can attach "margins of error" to fitted effects using
the basic method for estimating a linear combination of means (L’s) presented in that section.
The general formula from Section 21 takes a particularly simple form in the case of fitted

effects from a 2p study. Corresponding to each 2p factorial fitted effect, Ê (an L̂), is a theoreti-
cal/population effect (a corresponding L). Confidence limits for the theoretical effect are then

Ê ± tsP
1

2p

√
1

n(1)
+

1

na
+

1

nb
+

1

nab
+ · · ·

In the case that the data are balanced (all samples are of size m) this formula reduces to

Ê ± tsP
√

1

m2p

These formulas provide the margins of error necessary to judge whether fitted effects clearly repre-
sent some non-zero real effects of the factors.
The use of confidence limits for effects requires that there be some replication somewhere in

a 2p study, so that sP can be calculated. As long as someone knowledgeable is in charge of an
experiment, this is not typically an onerous requirement. Getting repeat runs at a few (if not
all) sets of experimental conditions is typically not as problematic as potentially leaving oneself
with ambiguous results. But unfortunately there are times when a less knowledgeable person is in
charge, and one must analyze data from an unreplicated 2p study. This is a far from ideal situation
and the best available analysis method is not nearly as reliable as what can be done on the basis
of some replication.
All one can do when there is no replication in a 2p factorial is to rely on the likelihood of "effect

sparsity" and try to identify those effects that are clearly "bigger than noise" using normal plotting.
That is,
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• a kind of "Pareto principle" of effects says that in many situations there are really relatively
few (and typically simple/low order) effects that really drive experimental results, and relative
to the "big" effects, "most" others are small, almost looking like "noise" in comparison, and

• when effect sparsity holds, one can often identify the "few big actors" in a 2p study by normal
plotting the fitted effects, looking for those few fitted effects that "plot off the line established
by the majority of the fitted effects."
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Part III

Introduction to Modern (Statistical)
Machine Learning
39 Some Generalities and k-Nearest Neighbor Prediction

(Text Reference/Reading: JWH&T Sections 2.1,2.2.&3.5)

The subject of most of the last three weeks of Stat 587 is an introduction to "(statistical) machine
learning" or "(big data) predictive analytics" or "data mining." The James, Witten, Hastie and
Tibshirani book could be a text for an entire course on this subject. In 587, we’ll have time only
to provide some basics that should give you perspective as to "what is here" and enable you to dig
deeper on your own if the need arises.
There are two basic flavors of methodology in this field. There is "supervised" learning,

that amounts to developing a predictor for output y based on inputs x1, x2, . . . , xp, and there is
"unsupervised" learning, that concerns finding/describing patterns in x1, x2, . . . , xp. We’ll
spend our time on supervised learning.
There are then two versions of predictive analytics (supervised learning). These are

1. a "regression" version, where the y to be predicted is a genuinely quantitative (measured)
variable, and

2. a "classification" version, there the y to be predicted is a category, often just 0 or 1 (or 1 and
2), but sometimes an appropriate one of 1, 2, . . . ,K.

One begins with an (x1, x2, . . . , xp, y) dataset that forms the basis for producing ŷ (x1, x2, . . . , xp)
a (hopefully good) predictor of y. In this area, this set of N cases and p + 1 variables (giving an
N × (p+ 1) data matrix) is usually called the set of "training data."
If instead of training data (almost always assumed to be iid observations from some joint dis-

tribution for (x1, x2, . . . , xp, y)) one had a complete understanding of the joint distribution for
x = (x1, x2, . . . , xp) and y, identification of the best possible predictor, ŷopt (x) is relative simple.

1. In regression problems, one might seek to minimize an average squared prediction error

E (y − ŷ (x))
2

over choices of function ŷ (·). Some reasonably simple probability then establishes that in
this case an optimal predictor is

ŷopt (x) = E [y|x]

the conditional mean of y for the input x.

2. In classification problems, one might seek to minimize a misclassification rate

P [y 6= ŷ (x)]
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over choices of function ŷ (·). Some reasonably simple probability then establishes that in
this case an optimal classifier (predictor) is

ŷopt (x) = the class m maximizing P [y = m|x]

the possible value of y with the largest conditional probability for the input x.

"The problem" is that one doesn’t have complete knowledge of the joint distribution for x and y
and can only use the training data to approximate ŷopt (x).

So, how does one start here? We already have some ideas available from what has gone before.
In a regression problem, one obvious predictor of y is the (MLR) least squares predictor

ŷ (x) = b0 + b1x1 + b2x2 + · · ·+ bpxp (30)

for coeffi cients b0, b1, b2, . . . , bp derived fromMLR. But in bigN contexts, where many cases/instances
are available in the training set and the training data are potentially adequate to support the
predictor-building, we’d like to consider predictor forms much more flexible than form (30).
One very flexible simple form of prediction is built on a "k-nearest neighbor" idea. That is

the following. For prediction/classification at a vector of inputs x, one finds the k cases xi in the
training set with the smallest values of

dist (x,xi) =

√
(x1 − x1i)

2
+ (x2 − x2i)

2
+ · · ·+ (xp − xpi)2

These are the k-nearest neighbors of x in <p. Then considering the yi corresponding to these k
nearest neighbors, one uses

ŷ (x) = the mean yi for the k nearest neighbors of x in the training set

in regression problems, and in classifications uses

ŷ (x) = the class m with the largest representation among the yi
for the k nearest neighbors of x in the training set

An issue with the "k-nn" idea that demands attention from a careful user is that as just de-
scribed, the method is units-dependent. If one changes the units in which one of the coordinates
of x is expressed, its k-nearest neighbors can change. Indeed, once one begins to notice this issue,
the whole notion of computing a "distance" between input vectors whose coordinates have any

units seems suspect. (After all, what could an expression like
√

(3V)
2

+ (2kg)2 mean?) A way
of mitigating this is to operate with standardized predictors. That is, if coordinate l of the input
vectors xi (i = 1, 2, . . . , N) has sample mean x̄l and sample standard deviation sl, one can employ
a standardized predictor z with lth coordinate

zl =
xl − x̄l
sl

These are unitless and scaled so that in every dimension the training set has standard deviation
1. "Distance" defined in terms of the standardized predictor z makes sense (and is also unitless).
Rather than write "z" we’ll continue to write "x" with the understanding that in the case of k-nn
prediction the predictor has been standardized.
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In predictive analytics, we must consider both the flexibility of a prediction method (its ability
to produce a predictor approximating the theoretically optimal one) and the adequacy of a dataset
to support its use. Often (especially when p is large) one doesn’t have a large enough training set
(large enough N) to make the nearest neighbor idea effective. On the other hand, MLR is often not
flexible enough to approximate a (non-linear) optimal predictor. Somehow, one needs to consider
a spectrum of methods of various flexibilities and find a methodology whose flexibility is as great
as possible, subject to the dataset’s adequacy to support its use.
A qualitative insight that can be made precise in a variety of specific situations is this:
expected non-negative
penalty for imperfect

prediction using ŷ (x) (derived
from the training set)

 =

 expected non-negative
penalty for imperfect
prediction using ŷopt (x)

+


expected non-negative penalty
for any difference between

ŷopt (x) and the best predictor
possible in the class considered



+


expected non-negative
penalty for not realizing
the best predictor possible
in the class considered


This says that overall "poorness" of prediction can be seen as the sum of 3 components. The
first is a kind of baseline contribution that is inherent in the problem, accounting for the best one
could possibly do if one knew the joint distribution of x and y. The second term is a modeling
penalty, suffered because one doesn’t allow enough flexibility in the choice of predictor class. (For
example, if one uses a MLR predictor and ŷopt (x) =E[y|x] is actually very non-linear, this term
might be large. Even the best linear predictor could be much worse than ŷopt (x).) Finally, the
last term is a fitting penalty that can be large because of randomness in the training set and/or
poor technology in choosing a predictor from the class of predictors considered. Good choice of an
overall prediction methodology attempts to balance the last two terms, finding a class of predictors
(and effective fitting methodology) that is as flexible as possible without requiring more information
than is really provided by a training set.
What can be done in practical terms toward such a goal is this. For regression problems, one

can apply K-fold cross-validation as described in Section 32 to a variety of prediction methodologies
and look for the one that has the smallest "prediction error"

1

N
CV SSE = CVMSPE

and select that methodology for application to the entire training set in order to produce a final
predictor ŷ (x). For classification problems, if ŷj (x) is a predictor/classifier derived from all
training data except that in the jth fold, an appropriate K-fold cross-validation "prediction error
rate" is

1

N

K∑
j=1

∑
i in fold j

(
the number of cases i with yi 6= ŷj (xi)

)
One applies this measure to a variety of classification methodologies, looking for the one that has
the smallest value, then applying that to the entire training set in order to produce a final classifier
ŷ (x).
A final point in this introduction concerns the necessity of full cross-validation. The entire

process of predictor development that one intends to apply after cross-validation must be applied
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K times (each time with one of K folds not included in the training set) in order to reliably assess
the likely effectiveness of a given method. This includes any data preprocessing steps like
predictor standardization! For example, one cannot simply standardize once using sample means
and standard deviations computed from the entire training set, but must standardize separately
before building each one of the K predictors ŷj (x) and finding a cross-validation error. (The
point is that if one only standardizes once, since each overall sample mean x̄l and sample standard
deviation sl depends upon all N cases, all N cases end up participating in the development of each
ŷj (x), something one is specifically trying to avoid in cross-validation.)
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40 "Ridge," "LASSO," and "Elastic Net" Linear (Regres-
sion) Predictors

(Text Reference/Reading: JWH&T Sections 6.1&6.2)

We’ll soon consider some other ways (beyond the k-nn idea) of creating highly flexible predictors
from even a small number of inputs x1, x2, . . . , xp. But before doing that, we consider problems
where one begins with a "large" number of inputs (p is big) and the diffi culty to be faced is that
there are usually predictors that aren’t needed and there is a strong likelihood of overfitting unless
one finds a way to appropriately control the flexibility of even a linear form like (30).
One idea in this direction was at least implicit in the earlier MLR material: that of "dropping

some predictors" from a linear form. That is, one can consider "subset selection" for a set of
predictors. Early application of this kind of thinking was phrased in terms of "all possible R2

routines" that looked for "best" models (in terms of R2) with a given number of predictors. (Not
much formal attention was paid to consideration of avoiding overfit.) It is, of course, possible to
try to compare cross-validation performance of all possible reduced models derived from a MLR
full model as a more reliable way of seeking a good subset of p inputs for predicting y. But this is
a very "discrete" approach to the problem of reducing predictor flexibility to a point appropriate
for a given dataset, and is computationally infeasible for many modern problems (the number of
reduced models to consider grows exponentially with p). Another, very clever, more continuous
approach has instead gained currency.
Dropping predictors xl from consideration can be thought of as a priori setting some bl’s to 0.

This is in some ways enforced "shrinking" of a vector of fitted regression coeffi cients, b, toward 0
in <p. Modern "penalized regression" methods come at the problem of "reducing flexibility" in a
linear form by a more general "shrinkage" idea. But before laying this out, we must start by noting
that when units are involved, the numerical value (so, the "size,") of a fitted regression coeffi cient
bl depends upon the units used to express xl and y. So, again as for nearest neighbor prediction,
it is sensible to consider standardized predictors. If we let

zl =
xl − x̄l
sl

a fitted equation in terms of standardized inputs

ŷ = b0 + b1z1 + b2z2 + · · ·+ bpzp

corresponds directly to

ŷ =

(
b0 −

(
b1
x̄1

s1
+ b2

x̄2

s2
+ · · ·+ bp

x̄p
sp

))
+

(
b1
s1

)
x1 +

(
b2
s2

)
x2 + · · ·+

(
bp
sp

)
xp

So coeffi cients for standardized predictors divided by sample standard deviations of predictors in
"original units" give coeffi cients for predictors in original units. We henceforth presume inputs
xl are already standardized.
For λ ≥ 0, a so-called ridge regression coeffi cient vector bridgeλ is a minimizer of the penalized

error sum of squares

RPen-SSE (β) =

N∑
i=1

(yi − (β0 + β1x1i + β2x2i + · · ·+ βpxpi))
2

+ λ

p∑
i=1

β2
i
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For λ = 0 this is an unpenalized error sum of squares and bridge0 is simply the ordinary least squares
(standard MLR) coeffi cient vector. As λ → ∞, the intercept in bridgeλ converges to ȳ and all
other coeffi cients converge to 0 (so that ŷ → ȳ). For all λ > 0 the ridge penalty provides overall
"shrinking" of the coeffi cients of the xl (compared to their MLR counterparts) toward 0 and ŷ
toward a constant predictor. This "ridge" penalty idea thus provides a continuous spectrum of
linear predictors, varying from the most flexible (for λ = 0) to the least (for very large λ). One
can hope to compare them by cross-validation and find a λ and corresponding ŷ that provides good
predictions.
A first variant of this idea is so-called "lasso" (l

¯
east a

¯
bsolute s

¯
hrinkage and s

¯
election o

¯
perator)

penalized regression. For λ ≥ 0, a so-called lasso coeffi cient vector blassoλ is a minimizer of the
penalized error sum of squares

LPen-SSE (β) =

N∑
i=1

(yi − (β0 + β1x1i + β2x2i + · · ·+ βpxpi))
2

+ λ

p∑
i=1

|βi|

The penalty here involves absolute values of coeffi cients rather than their squares. Although it is
probably not obvious to the reader, this change has the effect of tending to make some individual
entries of blassoλ exactly 0, i.e. of exactly "zeroing out" dependencies of ŷ on some of the xl, and
thereby accomplishing a kind of automatic or continuous "variables selection."
For λ = 0 the lasso-penalized error sum of squares is again the unpenalized error sum of squares

and blasso0 is once more simply the ordinary least squares (standard MLR) coeffi cient vector. As
λ → ∞, the intercept in blassoλ converges to ȳ and all other coeffi cients converge to 0 (so that
ŷ → ȳ). As in ridge regression, for all λ > 0 the lasso penalty provides overall "shrinking" of the
coeffi cients of the xl (compared to their MLR counterparts) toward 0 and predictors toward the
constant predictor ŷ = ȳ. The number of individual coeffi cients in blassoλ that are exactly 0 tends
to increase with λ. (It is not the case, however, that because a βl is zeroed out at a particular
value of λ it must necessarily remain zeroed out for larger λ.) Like ridge penalization, the lasso
idea thus provides a continuous spectrum of linear predictors, varying from the most flexible (for
λ = 0) to the least (for very large λ). One can hope to compare them by cross-validation and find
a λ that provides good predictions.

A generalization of both ridge and lasso ideas is so-called "elastic net" penalized regression.
For constants λ1 ≥ 0 and λ2 ≥ 0 a so-called elastic net coeffi cient vector benetλ is a minimizer of the
penalized error sum of squares

ENPen-SSE (β) =

N∑
i=1

(yi − (β0 + β1x1i + β2x2i + · · ·+ βpxpi))
2

+ λ1

p∑
i=1

|βi|+ λ2

p∑
i=1

β2
i

The penalty here involves both ridge- and lasso-type parts. The lasso part of the penalty tends
to provide some effect of exactly "zeroing out" dependencies of ŷ on some of the xl, as in lasso
regression accomplishing a kind of automatic variables selection. Since by choosing one of the
coeffi cients λ to be 0 one gets both ridge and lasso penalties as special cases, the best elastic net
regression predictor is at least as good as the best ridge or the best lasso predictor (either one of
which is by the same logic at least as good as the ordinary least squares MLR predictor!).
For λ1 = λ2 = 0 the elastic net penalized error sum of squares is the unpenalized error sum of

squares and benet0 is simply the ordinary least squares (standard MLR) coeffi cient vector. As one
or both of the λ’s grow the intercept in benetλ converges to ȳ and all other coeffi cients converge to 0
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(so that ŷ → ȳ). For at least one λ > 0, the elastic net penalty provides overall "shrinking" of the
coeffi cients of the xl (compared to their MLR counterparts) toward 0 and predictors toward the
constant predictor ŷ = ȳ. The elastic net idea thus provides a doubly indexed continuous spectrum
of linear predictors, varying from the most flexible (for λ1 = λ2 = 0) to the least (for very large λ1

or λ2). One can hope to compare them by cross-validation and find a pair (λ1, λ2) that provides
good predictions.
The fitting of ridge, lasso, and elastic net regressions in R is effectively done using the glmnet

package in R. The caret package in R is also an extremely useful one, in that it makes doing cross-
validation and corresponding comparison of multiple parameter sets for various prediction packages
(including glmnet) quite routine by providing one standard input and function call format. It has
an option (that surely should be used with the methods of this section) for automatically handling
the redoing of standardization for each fold of a cross-validation study.
Ultimately, the use of the methods of this section help one avoid overfitting in a "large p" linear

prediction problem by more or less damping the effects of inputs on predictions (over what would
be suggested by least squares MLR). Fitted predictions are shrunken towards ȳ and made less
flexible than what least squares alone would prescribe, in a way somewhat like what is prescribed
by consideration of reduced models in "ordinary" MLR.
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41 Tree Predictors (Regression and Classification Trees)

(Text Reference/Reading: JWH&T Section 8.1)

A flexible prediction methodology that is unlike anything we have discussed thus far is one
based on (binary) "trees." These are predictors (of both regression and classification types) that
are constant on "rectangular regions" of input space <p defined by sequentially splitting an existing
rectangular region into two parts on the basis of whether a particular (well-chosen) input variable
(say, xl) is larger or smaller than a particular (well-chosen) value. This kind of development of
a set of regions is effectively summarized graphically with a binary tree. Figure shows a simple
p = 2 example made using 4 splits and therefore having 5 "rectangular regions" indicated as R1,
R2, R3, R4, and R5. A predictor based on this tree would be constant on each of the 5 regions.

Figure 3: Hypothetical Binary Tree for a p = 2 Case

For the time being putting aside the question of how one looks for an appropriate tree structure,
consider the issue of what training-set-based predictor to use for a given tree. In the "regression"
case one is going to make ŷ constant on each region R and judge training set performance in terms
of sum of squared prediction errors. So if R(x) is the region containing x, it is clear that a best
choice of constant prediction for the region is simply

ŷtree (x) = ȳR(x) = sample mean response for those training

cases with xi in the same region (R (x) ) as x

In the classification case, one is going to make ŷ constant on each region R and judge training
set performance in terms of training set misclassification rate. So it is clear that a best choice of
constant prediction for the region is simply

ŷtree (x) = the most frequent class (value of yi) for those training

cases with xi in the same region (R (x) ) as x

So now consider the problem of finding a "good" binary tree structure to use in prediction.
What is possible and common is a two-step process consisting of

1. "growing" a large tree using a "forward selection" heuristic guided by a measure of overall
consistency of training set yi’s for the xi’s in each region, (usually) followed by
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2. a "pruning" step where optimal sub-trees of the large tree from 1. are identified and naturally
linked with values of a penalty/complexity parameter.

(The complexity parameter is chosen by cross-validation and an optimal sub-tree of the heuristically
derived large tree based on the whole training set is then employed for final prediction.)
To provide some more details, consider first the building of the large tree referred to in 1. For

m ≥ 0 suppose that m splits have been made, making m+1 rectangular regions. In order to choose
an (m+ 1)st split, one considers all splits of all possible existing rectangular regions between all
values possible of all p variables xl, and chooses the one providing the greatest reduction in some
measure of "impurity" of the yi’s for xi’s within each region. For regression cases, the most
natural impurity measure is the error sum of squares for ŷtree (x) (one looks for a split of one
rectangle providing the largest decrease in SSE). For classification cases, the most natural
impurity measure1 is the empirical misclassification rate (the training set error rate) for
ŷtree (x) (one looks for a split providing the largest increase in training set classification accuracy).
(In both instances, if rectangles are completely homogeneous with respect to their associated values
of yi, one has an apparently perfect predictor.) The tree-building process continues until a "perfect"
predictor is produced or some preset upper limit for number of rectangles is reached.
In order to describe "optimal" pruning of a tree, we must first consider a complexity-penalized

figure of merit to associate with a tree predictor. For a tree T and associated predictor ŷtree (x),
let E (T ) stand for

1.
SSE

N
in a regression problem, or

2. the empirical (training set) misclassification rate in a classification case.

Then for |T | the number of rectangular regions defining the predictor (the number of splits made
plus 1) and α > 0, a penalized prediction cost to associate with T is

CT (α) = E (T ) + α |T |

For a large binary tree S grown for prediction (regression or classification) from a training set,
it turns out to be possible to effi ciently consider all possible sub-trees of S that can be produced by
"cutting" the tree diagram at any subset of its branch points2 , and find the one minimizing CS (α)
for each α. Call the best sub-tree for the value α by the name Sα. As α increases, the size of the
optimal sub-tree, |Sα|, decreases. The α = 0 case is the full tree, S. The very large α case is that
where no splits are made. It is worth noting that as α goes from 0 to ∞, it will typically not be
the case that |Sα| takes every integer value from |S| to 0. There will typically be some potential
sizes of sub-trees for which no sub-tree of that size is best for any value of α.
Tree predictors are very flexible and (at least when they are based on relatively few splits) are

easy to interpret. They also have the interesting feature that they are completely scale-independent
as regards the inputs, xl. Since transforming any of the inputs using an increasing or decreasing
transformation doesn’t change the predictor, using a tree predictor eliminates the question of how
to transform individual inputs.

1There are other impurity measures sometimes recommended for classification problems. Two are the so-called
"Gini index" and the so-called "cross entropy."

2There are many more sub-trees possible than just those met in the building of S.
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42 Bootstrapping, Bagging, and Random Forests

(Text Reference/Reading: JWH &T Section 8.2.1 & 8.2.2)

A way of making "new" datasets that "look like" a training set without looking "too much" like
the training set is known as bootstrapping. A bootstrap sample from a training set of size N is
a dataset made by sampling N cases at random with replacement from the the training set. The
result is a random variant of the training set that (as long as N is at all large, say at least 20) is
virtually guaranteed to miss some cases in training set and include multiple copies of others. (It’s
fairly easy to argue that on average about 37% of the training set will be missed in the bootstrap
sample for such N). A predictor built from a bootstrap sample is then a random variant of a
predictor built from the original training set.
The idea of "bagging" (so-called bootstrap aggregation) is to make many (say B) bootstrap

samples, create a predictor from each, and to "aggregate" these into a single predictor. The hope
is to reduce the tendency to overfit (by virtue of not using a given case in making a fair number of
the constituent predictors) while nevertheless remaining true to overall patterns in the training set
(by virtue of making only random variants of the full training set as bootstrap samples).
To be somewhat more precise, for bootstrap sample b, let ŷb (x) be the corresponding predictor

built using a particular methodology of interest. (One can "bag" any form of predictor, though
the discussion in JWH&T Section 8.2 reads as if the methodology concerns only tree predictors.)
Then in regression contexts, a bagged version of the predictor is

ŷbagged (x) =
1

B

B∑
b=1

ŷb (x)

the sample mean of the B predictors built from the bootstrap samples. For classification contexts,
the obvious way to aggregate is to set

ŷbagged (x) = the most frequent class (value of ŷb (x) ) for

the B predictors built on bootstrap samples

One expects that for large B the predictions and corresponding performance of ŷbagged (x) converge
to those of some limiting case (as the effect of random selection of the bootstrap samples is averaged
out across a large number of "trials").
In an important and happy development, bagging more or less provides its own cross-validation.

That is, since any particular training case i is missed by about 37% of the B bootstrap samples,
if its yi is predicted using those bootstrap samples only, one might hope to accurately approximate
prediction performance of the methodology. That is, let ŷ∗i be a version of the bagged prediction at
xi computed using only those bootstrap samples that do not include case i. In regression contexts
a so-called "out-of-bag" mean square prediction error is

OOB =
1

N

N∑
i=1

(yi − ŷ∗i )
2

and in classification problems an out-of-bag classification error rate is

OOB =
1

N
(the number of yi 6= ŷ∗i )

88



These depend upon B but converge with increasing B to a number that can be expected to represent
the real prediction performance of the method being considered. In practice, one plots these against
B looking for when the plot levels off as a means of judging when B is large enough for use in a
particular application.
A very important application of bagging is the so-called "random forest" predictor. This is

bagging of a specialized kind of tree. A random forest is made by operating on each of B bootstrap
samples to produce a constituent tree as follows. All nodes are split until any further split of a
node would produce one with fewer than "nodesize" cases in it. In splitting a particular node,
some number, m, of the p dimensions of the input vector x are chosen at random for consideration,
and the best split possible for (only) those coordinates xl of x is selected. The parameters m and
nodesize can be optimized for the best performance in terms of "large B" values of OOB. When
this is not done, more or less standard default values for parameters are

1. m = bp/3c and nodesize = 5 in regression problems, and

2. m =
⌊√

p
⌋
and nodesize = 1 in classification problems.

A different kind of control on how complex a particular tree in the forest can become that is
sometimes used with or in place of the nodesize constraint, is limitation on the depth of any
final node of the tree. (For example, one might split nodes until every final node is no more than
depth = 4 splits from the top of the tree.) All of nodesize, depth, and m are complexity parameters
that can be optimized (in terms of limiting OOB) in choice of a good random forest.
Random forests have been remarkably effective in a wide variety of applications. The admit-

tedly rather odd-sounding rules by which they are produced often turn out to produce very good
predictors.
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43 Boosting and Stacking (Trees and Other Regression Pre-
dictors)

(Text Reference/Reading: JWH&T Section 8.2.3)

Bagging is an "ensemble" prediction method, in that it combines a number of different predictors
into a single overall predictor. The ensemble notion has several other implementations in modern
predictive analytics. Two that we will introduce here are known as "boosting" and "stacking."
Boosting amounts to successive correction of a current predictor by small perturbations in-

tended to (successively) improve prediction (essentially by broadening the form allowed for an
ultimate predictor). Consider the "regression" prediction problem, where the response variable, y,
is quantitative. Take an initial predictor to be

ŷ0 (x) = ȳ

Then with an mth version of a predictor, say ŷm (x) in hand, make mth "residuals"

emi = yi − ŷm (xi)

Choose/fit some good predictor of "responses" emi , say ê
m (x). Then for some (typically small)

factor 0 < ν < 1, create an (m+ 1)st predictor as

ŷm+1 (x) = ŷm (x) + ν · êm (x)

This is ŷm (x) corrected for the fraction ν of its failure to perfectly predict y. Complexity parameters
here are

M = the number of boosting iterations for the final predictor

and ν, predictor complexity increasing with both. Rational choice of them to produce

ŷboost (x) = ŷM (x)

proceeds by cross-validation.
The choice of the form of predictors for residuals in boosting is not limited to any one of

the methods considered here, but by far the most common implementation employs trees. The
end result of doing (regression-type) boosting with trees is to make a predictor that is a linear
combination of trees. (In this context, another complexity parameter will be the depth to which
one is allowed to build a tree êm (x).) A currently extremely popular form of boosting with trees
is the so-called "XGBoost" (extreme gradient boosting) algorithm that has a very fast/effective
implementation in R (and other languages like python commonly used in machine learning).
There are versions of boosting appropriate to classification problems, the most famous of which

is the "AdaBoost.M1" algorithm. Recently, a version of XGBoost appropriate to classification has
gotten more attention than the original AdaBoost.M1, probably mostly because of the former’s
superior implementation. Exact forms of boosting for classification are harder to motivate and
describe than boosting for regression problems, so we will not try to present them here.
The fact that a boosted regression predictor is "a linear combination of trees" suggests the

possibility of simply beginning with several regression predictors, say ŷ1 (x) , ŷ2 (x) , . . . , ŷM (x),
corresponding constants c1, c2, . . . , cM , and then using an ensemble regression predictor

ŷstacked (x) =

M∑
m=1

cmŷm (x) (31)
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that is a linear combination of the M separately-derived predictors. The obvious fact that each
ŷm (x) can be obtained by choosing cm = 1 and all other coeffi cients 0 implies that one can always
do at least as well using an effectively chosen stacked predictor as can be done using any single
element of the ensemble. The "trick," of course, is effective choice of the constants cm.
The linear form (31) suggests a variety of "generalized stacking" methodologies. One can essen-

tially think of the first-level predictors ŷ1 (x) , ŷ2 (x) , . . . , ŷM (x) as a set of clever "features" to be
treated as inputs to any final prediction methodology of interest. Due to their scale-independence,
tree-based methods (ordinary trees or random forests or tree-based boosting) are particularly at-
tractive at the top level– arguably more so than ordinary (linear-combination-type) stacking. The
choice of method complexity parameter(s) is then the fundamental problem to be overcome. As
always, cross-validation is the most effective guide to the simultaneous choice of the parameter(s)
of each of the first-level predictors ŷ1 (x) , ŷ2 (x) , . . . , ŷM (x) and the top-level methodology. The
main obstacle to success is the huge amount of computing implied by its use.
There are more or less obvious versions of "generalized stacking" that can be applied to classifi-

cation problems. For ŷ1 (x) , ŷ2 (x) , . . . , ŷM (x) classifiers or underlying assessments of P [y = 1|x],
treating them as features entered into a fixed final classification methodology is a way to make an
effective final ensemble classifier. The practical limitation is again the feasibility of cross-validation
to guide choice of tuning parameters and assess likely final performance.
The main attraction of ensemble predictors is the fact that they offer flexibility/complexity

beyond that provided by any single method used in isolation. Their main limitation is the diffi culty
of control of that flexibility through proper cross-validation that does with K training sets (each
missing a fold of the training set) what will ultimately be done with the entire training set to make
an ensemble predictor.
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44 Smoothing and Generalized AdditiveModel (Regression)
Prediction

(Text Reference/Reading: JWH&T Sections 7.6-7.7)

The issue of "feature engineering" in prediction can be thought of as the problem of potentially
replacing (or supplementing) individual predictors xl (or several predictors xl) with transformations
(functions) of them that work better as inputs to standard predictor forms than the xl themselves.
Of course, identifying what features will be effective in a given problem is "the diffi culty." Smooth-
ing methods and their use in "generalized additive" prediction can to some degree be thought of
as an "automatic" means of feature selection. Rather than more or less rummaging through one’s
repertoire of familiar useful functions (logs, trig functions, exponentials, etc.) smoothing attempts
to custom-build new predictors from existing ones3 .
There are two main lines of development of smoothing methods. So-called smoothing splines

are introduced in Section 7.5 of JWH&T and (local averaging and) local regression methods are
introduced in their Section 7.6. The latter are easier to describe than the former, and since time is
short and often the two approaches give similar results, here we will consider only local (averaging
and) regression methods and their use in generalized additive modeling (treated in Section 7.7 of
JWH&T).
Temporarily suppose that only a single predictor, x, is under consideration (p = 1). For a basic

"smoothing kernel" D (t) ≥ 0 that is symmetric in t around 0 and decreases in |t| (often chosen so
that D (t) = 0 for |t| > 1) we first consider building weighted average predictors based on D (t).
For concreteness sake, one can consider the choice

D (t) = φ (t)

where the basic kernel is the standard normal pdf. Three standard choices of kernels are portrayed
in Figure 4, where the choice D (t) = φ (t) is plotted in red.

Figure 4: Three Standard Smoothing Kernels D (t). Normal is in Red. "Epanechnikov" is in Blue.
"Tricube" is in Black.

For λ > 0 a "bandwidth" and prediction at a value x, we consider weighting the values
x1, x2, . . . , xN through D (t) and their distances to x as

wλ (xi, x) = D

(
xi − x
λ

)
3Tree-based prediction methods in some sense avoid this issue altogther in that making increasing or decreasing

transformations of input variables has no effect on tree predictions.
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(The larger the bandwidth, the more slowly weights decay as one moves away from x.)
Then a weighted average predictor (the so-called Nadarya-Watson predictor) is

ŷNWλ (x) =

∑N
i=1 yiwλ (xi, x)∑N
i=1 wλ (xi, x)

This predictor is a smooth function of x. For large λ it is essentially ȳ. For small λ it is very
much controlled by the value of y at the training case closest to x. λ is a complexity parameter
that can be chosen by cross-validation.
Even for wisely chosen values of the bandwidth, ŷNWλ (x) has deficiencies related to its inability

to track a trend in y at the left or right ends (regarding x) of a training set, and at places "inside" the
dataset where the values xi are relatively sparse. Two modifications of the basic "local averaging"
notion address this problem. These are 1) the replacement of local averaging with local regression
and 2) making the bandwidth "adaptive."
The (simple linear)4 local regression idea is this. For prediction at x, one uses a value from a

"local regression line"
ŷlocalλ (x) = bλ0 (x) + bλ1 (x) · x

whose coeffi cients bλ0 (x) and bλ1 (x) minimize the locally weighted error sum of squares

SSExλ (b0, b1) =

N∑
i=1

wλ (xi, x) (yi − (b0 + b1xi))
2

(This down-weights the impact of poor predictions far from x in the choosing of coeffi cients b0 and
b1 for the line used to predict y at x.)
The idea of making the bandwidth λ adaptive is to replace direct choice of a single λ with choice

of a parameter "span" that governs roughly how much of a training set is involved in the choice of
local regression coeffi cients at x. For example, if the parameter span is set to .25, at each different
x a bandwidth is chosen so that only the .25N training cases with xi closest to x get any appreciable
weight wλ (xi, x), and thus have any influence on the choice of coeffi cients b0 and b1. So, instead
of choosing a single bandwidth via cross-validation, one chooses a single span via cross-validation
as a means of identifying a level of smoothing that the training set will support.
Moving the local regression idea beyond the case of a single predictor to the case where x ∈ <p

is at least in theory completely straightforward. For prediction at x, one uses a "local MLR"

ŷlocalλ (x) = bλ0 (x) + bλ1 (x) · x1 + bλ2 (x) · x2 + · · ·+ bλp (x) · xp

whose coeffi cients bλ0 (x) , bλ1 (x) , . . . , bλp (x) for weights

wλ (xi,x) = D

(
dist (xi,x)

λ

)
("dist" meaning <p distance) minimize the weighted error sum of squares

SSExλ (b0, b1, . . . , bp) =

N∑
i=1

wλ (xi,x) (yi − (b0 + b1x1i + · · ·+ bpxpi))
2

4More complicated versions of this idea can do weighted quadratic or higher order polynomial regression at x.
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(This down-weights the impact of poor predictions far from x in the choosing of coeffi cients
b0, b1, . . . , bp for the linear form used to predict y at x.) And the span idea translates directly to
local MLR using regular Euclidean distance in <p.

It is operationally straightforward to do local regression smoothing in high dimensions (for large
p). But in practical terms, for p much larger than 2 or 3 local regression typically suffers from
the same kind of tendency to overfit as does k-nn prediction. When smoothing is to be helpful in
high dimensions, it needs to applied to a few variables at a time. This is the motivation behind
generalized additive modeling/prediction.

To fix ideas, consider a p = 3 case with predictor x = (x1, x2, x3). A generalization of the basic
MLR form

ŷ = b0 + b1x1 + b2x2 + b3x2

is a form
ŷ = g1 (x1) + g2 (x2) + g3 (x3)

for arbitrary smooth functions g1, g2, and g3. It turns out to be possible to use the local regression
smoothing ideas (1 dimension at a time, iteratively until convergence) to empirically make approx-
imations of best versions of these functions, say ĝ1, ĝ2, and ĝ3. Operationally, this is accomplished
using a "generalized additive model" fitting program in R. The resulting predictor

ŷ = ĝ1 (x1) + ĝ2 (x2) + ĝ3 (x3)

amounts to a kind of continuous input "(arbitrary smooth) main effects only" predictor. It is even
possible to use the technology to fit a form like

ŷ = g1 (x1) + g2 (x2) + g3 (x3) + g4 (x1, x2)

that includes continuous input two-factor interactions of x1 and x2. And so on. As the number
of terms used as arguments of a g increases beyond 1, the size of the training set needed to make
the technology effective skyrockets. But this idea does provide a way forward for high-dimensional
flexible feature extraction.
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