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Statistics for "Big Data" (AKA "Machine Learning" and
"Data Analytics")
Notation/Set-up

N cases of p or p + 1 variables, x1, x2, . . . , xp and possibly y :

Variables

Cases

x11 x12 · · · x1p y1
x21 x22 · · · x2p y2
...

...
. . .

...
...

xN1 xN2 · · · xNp yN

variables ↔ features
cases ↔ instances
xi = (xi1, xi2, . . . , xip)

′ case i vector of x values.

Stephen Vardeman (Analytics Iowa LLC) Statistical Machine Learning-1 January 2018 2 / 13



Statistics for Big Data
Realm of Application, Objective, New Possibility

Big N (and potentially big p) and little fundamental interest in model
parameters (or exactly how much is known about them)

(As in all of statistics) Identifying, (?describing?,) and enabling the
practical use of simple (low-dimensional/low-order) structure in the
N × p or N × (p + 1) data array

The potential to choose among a broad spectrum of method
"complexities" to match one to a given application
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Machine Learning/Statistics for Big Data
Types of Problems

supervised learning problems1, where there is a response/output
variable or target, y , and the problem is finding a function of p
inputs, f (x), that approximates y

Where y is measured/continuous, the problem is typically called
prediction
Where y takes values in a finite set {1, 2, . . . ,K}, the problem is
classification or pattern recognition

unsupervised learning problems, where there is no response variable
and the objective is to identify relationships between the p variables x
or commonalities in segments of the N cases or p variables

Standard versions are clustering, principal components analysis, and
multi-dimensional scaling

1Here the input variables x are sometimes called covariates and the N × (p + 1)
data array T comprises the training data
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What "New" Issues Arise in Statistics for "Big Data"?
Computational Limitations (Not Really Addressed Here)

Where N and/or p is large, computational limitations can make
straightforward implementation of standard methods impractical or even
impossible

Sometimes clever implementations (for example, employing
parallelization or specialized hardware) make application of standard
methods feasible

Other times, new methods must be developed
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New Issues With "Big Data"
The Possibility of Profitably Fitting Flexible Forms of Predictors

For N big and p small, standard statistical prediction methods (like
multiple linear regression) produce precisely fit but relatively crude
predictors

Forms are only "first approximations" to a real relationship between
predictors x and output y and fail to really make full use of the
available information

There is the possibility of increasing "p" by (implicitly or explicitly)
building additional features from existing ones and/or simply using
more sophisticated and flexible forms for prediction

But there is also the potential to "over-do" and make p too large or
the method too flexible

One must somehow match predictor complexity to the real
information content of a training set
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New Issues With "Big Data"
The Curse of Dimensionality

If p is big, <p is "huge"
Intuition about how many cases are required to "fill up" even an
intuitively small part of p-space is poor
Essentially any data set with large p is necessarily "sparse"

Further, the potential complexity of functions of p variables explodes
exponentially in p

When p is large, it is essentially guaranteed that if one uses a method
that is "too" flexible in terms of the relationships between variables it
permits, one will be found, real/fundamental/reproducible or not

These issues are aspects of "the curse of dimensionality"
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New Issues With "Big Data"
"Over-Fitting" in Supervised Learning

The (common for large p) possibility that a data set is (sparse and)
not really adequate to support the use of a flexible supervised
statistical learning method can easily lead to over-fitting:

too closely following an apparent pattern in a (sparse) training set,
that then generalizes/extrapolates poorly to cases outside the training
set

This is equally as unattractive as failing to follow a clear
well-established pattern because one’s prediction methodology is too
simple/inflexible
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What to Do About Overfitting?
Explicit Optimization of Predicted Performance as a Function of Method Complexity

The standard way of choosing among "big data" statistical procedures is:

To define both a reliable measure of estimated/predicted performance
(like an estimated prediction mean square error) and a measure of
complexity for a predictor

Then one attempts to optimize (by choice of complexity) the
predicted performance2

Performance prediction almost always employs some form of
"holdout" sample (whereby performance is predicted using data not
employed in fitting)

2This approach balances risks of overfitting and "model bias" (where a fitted form is
not adequate to usefully represent the real relationship between x and y )
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Up-Front Work in Predictive Analytics—"Data Mining"
Development of Plausible "Feature" Vectors

Reduction of all information available and potentially relevant to
predicting y to values of p input variables3 (that encode relevant
"features" of the N cases) is an essential and highly critical activity4

Only if one defines good features/variables (parsimoniously
representing the N cases in ways compatible with the prediction
methodologies considered) does sound statistical methodology have a
chance of being practically helpful

In this way, the hard work begins substantially before the formal technical
subjects addressed in these modules come into play and typically continues
even after initial attempts at prediction

3This is at least one common meaning of the term "data mining"
4This is particularly true where many disparate sources are used to create the

training set, T, available for analysis
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Up-Front Work—Centering and Scaling Variables
Units and Scales

x (and y) variables are typically in different units and often represent
conceptually different quantities (e.g., voltage, temperature, and
distance)

In some analyses this causes no logical problems
In others (particularly ones based on inner products of data vectors or
distances between them and/or where "sizes" of model coeffi cients are
important) one gets fundamentally different results depending upon the
scales used

One surely doesn’t want predictions to depend upon whether a
distance is expressed in km or in nm

And the whole notion of the <2 "distance between two data vectors"
where different units are involved is problematic (e.g., what is√
(3 kV)2 + (2◦ K)2 supposed to mean?)
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Centering and Scaling Variables
Standardization of Predictors and Centering of Response

One approach to eliminating logical diffi culties that arise in using
methods where scaling/units of variables matters, is to standardize
predictors x (and center any quantitative response variable, y) before
beginning analysis

If a raw feature x has (in T) a sample standard deviation5 sx and a
sample mean x̄ , one replaces it with a feature

x ′ ≡ x − x̄
sx

(thereby making all features unit-less)

Conclusions about standardized input x ′ and centered response
y ′ = y − ȳ then translate naturally to conclusions about raw
variables via

x = sx · x ′ + x̄ and y = y ′ + ȳ
5The "N" dividsor in place of the "N − 1" divisor here is slightly simpler, as it makes

the x columns of T have <N norm
√
N (as opposed to

√
N − 1)
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Centering and Scaling Variables
Standardization of Predictors

Below is a plot of a small fake p = 2 raw data set (red) and corresponding
standardized data set (blue). (Raw data means and standard deviations
are x̄1 = 15, x̄2 = 10, s1 = 2.61, and s2 = 5.22.)
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Choosing a Level of Complexity
The "One-Standard Error of the Cross-Validation Error" Rule

A common method of choosing between levels of complexity has been this.
For the complexity producing the smallest realized cross-validation error,
one computes a standard error for the prediction error. That is, for each
"fold" Tk , one computes a kth "test error" for f̂ k obtained by fitting on
T−Tk and evaluating on Tk

CVk
(
f̂
)
) =

1
number of cases in Tk

∑
cases in Tk

L
(
f̂ k (xi ) , yi

)
Then for SDK the sample standard deviation of these CV1

(
f̂
)
,CV2

(
f̂
)
,

. . . ,CVK
(
f̂
)
, the standard error of interest is SDK/

√
K . One then

selects for use the least complex predictor with its own corresponding
cross-validation error no larger than

CV
(
f̂
)
+ SDK/

√
K
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Choosing a Level of Complexity
The "Minimum (Average) Cross-Validation Error" Rule

The most obvious and most aggressive way of using CV
(
f̂
)
(or better

CV
(
f̂
)
) to choose a predictor is to simply use the f̂ minimizing the

function CV (·) (or CV (·)).

It is an important and somewhat subtle point that if

f̃ = argmin
f̂

CV
(
f̂
)

CV
(
f̃
)
is not a valid cross-validation error for a predictor that arises from

"picking a winner" on the basis of CV (·) (or CV (·)).1 The issue is that

while CV
(
f̂
)
(or CV

(
f̂
)
) can legitimately guide the choice of f̂ , its use is

then actually part of a larger program of "predictor development" than
that represented by any single argument of CV (·) (or CV (·)).

1Intuition suggests that it will typically be optimistic as representing Err for the
pick-the-winner predictor.

Stephen Vardeman (Analytics Iowa LLC) Statistical Machine Learning-2B January 2020 3 / 4



Predicting Performance of a "Pick the Winner" Predictor
Cross-Validation for "Pick the CV-Winner"

In order to assess the likely performance of f̃ , via cross-validation, inside
each remainder T−Tk one must
1. split into K folds,
2. fit on the K remainders,
3. predict on the folds and make a cross-validation error,
4. pick a winner for the function in 3., say f̃ k , and

then predict on Tk using f̃ k . It is the values f̃ k (i ) (xi ) that are used to
make a cross-validation error for a predictor derived from optimizing a
cross-validation error across a set of predictors.

The basic principle at work here (and always) is that whatever one will
ultimately do in the entire training set to make a predictor must be
redone (in its entirety!) in every remainder and applied to the
corresponding fold.
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Decision Theory and Supervised Learning
Optimal Predictors and Classifiers

In the context of choosing f (x) to track y , suppose that P is a
((p + 1)-dimensional) distribution for (x′, y) and L (ŷ , y) ≥ 0 is a (loss)
function for penalizing prediction/classification ŷ when y holds. For "E"
expectation under P, one might hope to minimize expected prediction loss

EL (f (x) , y)

In theory (given P) this is "easy." One chooses ŷ = f (x) to minimize

E [L (ŷ , y) |x]

f (x) is the prediction that minimizes conditional (on x) expected (over y)
prediction loss.
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Decision Theory and Supervised Learning
Prediction of a Quantitative Output

For squared error loss (SEL)

L (ŷ , y) = (ŷ − y)2

an optimal predictor is
f (x) = E [y |x]

the conditional (on x) mean output. This is the usual "regression"
context, where one attempts to describe average response as a function of
the input vector.
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Decision Theory and Supervised Learning
Classification

In (K -class) classification problems where y takes values in
{0, 1, . . . ,K − 1} or {1, . . . ,K} a standard loss is so-called 0-1 loss1

L (ŷ , y) = I [ŷ 6= y ]

For this loss, an optimal classifier is ŷ = f (x) minimizing

∑
k 6=ŷ

P [y = k |x]

or, equivalently the maximizing ŷ for

P [y = ŷ |x]

f (x) is the possible value for y with the largest conditional probability
given the value of x.

1The "indicator" notation, I [statement], stands for a function that is 1 when
"statement" is true and 0 when it is false.
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Decision Theory and Supervised Learning
Classification Continued-Insights for K=2

For K = 2, suppose y takes values in {0, 1} and abbreviate P [y = 1] as π
(so that P [y = 0] = 1− π) and write g (x|1) and g (x|0) for the
class-conditional densities for x. Then

P [y = 1|x] = πg (x|1)
πg (x|1) + (1− π) g (x|0) and

P [y = 0|x] = (1− π) g (x|0)
πg (x|1) + (1− π) g (x|0)

An optimal classifier is

f (x) = I [P [y = 1|x] > P [y = 0|x]] = I [P [y = 1|x] > .5]

= I
[
g (x|1)
g (x|0) >

(1− π)

π

]
This decides in favor of y = 1 when P [y = 1|x] (or equivalently the
"likelihood ratio" g (x|1) /g (x|0)) is large.
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Test/Prediction/Generalization Error
Definition of Err

One cannot simply use an optimal predictor f , as one does not have P
(the joint distribution of (x′, y)). Instead, one has a training set T
providing information about P and the form, f̂ , of a practical predictor can
depend upon T.

Suppose that (for xi the case i row vector of feature values) the training
data (xi , yi ) for i = 1, . . . ,N are iid according to P, independent of a new
test case (x′, y) ∼ P. Let ET be expected value averaging out the random
training set and E(x,y ) be expected value averaging out the test case. A
figure of merit for f̂ is the "prediction"/"generalization"/"test" error

Err = ETE(x,y )L
(
f̂ (x) , y

)
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Test/Prediction/Generalization Error
Understanding Err

Err is the average loss suffered using predictor f̂ . The averaging is done
across (hypothetical) selections of training set of size N and (hypothetical)
test case.

For SEL prediction it is

ETE(x,y )
(
y − f̂ (x)

)2
a mean squared prediction error.

For 0-1 loss classification it is

ETE(x,y )I
[
y 6= f̂ (x)

]
an overall classification error rate.
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A General Decomposition of Err
Optimal, Restricted Optimal, and Fitted Predictors

A helpful decomposition of Err is available. If f (x) is the optimal
predictor of y , T is used to select a function (say gT) from a class of
functions S = {g} having expected losses E(x,y )L (g (x) , y) < ∞, and
ultimately one uses as a predictor

f̂ (x) = gT (x)

the situation is as in the cartoon below, where g ∗ is a minimizer of
E(x,y )L (g (x) , y) across g ∈ S .
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A General Decomposition of Err
Optimal, Restricted Optimal, and Fitted Predictors

The optimal f (x) is potentially (likely) outside of S . The "closest" one
can get to it inside of S is g ∗, and lacking full knowledge of P one can
only approximate this best element of S by the random choice f̂ = gT
(that is no better than g ∗ for any training set!).

It follows that Err=ETE(x,y )L
(
f̂ (x) , y

)
=ETE(x,y )L (gT (x) , y) can be

decomposed into three non-negative terms

Err = minimum expected loss possible+modeling penalty

+ fitting penalty
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A General Decomposition of Err
Modeling and Fitting Penalties

These three terms are

minimum possible error= expected loss of the optimal f

modeling penalty=the difference between the expected loss of f and
that of g ∗

fitting penalty=the difference between the expected loss of f̂ = gT
and that of g ∗

Err can be inflated because S is too small/predictors are inflexible
(inducing a large modeling penalty) or because the sample size and/or
fitting method are inadequate to make gT consistently approximate g ∗.
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SEL, Err, and "the Variance-Bias Trade-Off"
The Decomposition of Err and SEL

SEL prediction is a particularly important special case of the foregoing
where further insight is available. The terminology "variance-bias
trade-off" is common because2

minimum expected loss possible=average (across x) response variance

modeling penalty=average (across x) squared model bias

fitting penalty=
(
average (across x)
squared fitting bias

)
+

(
average (across x)
prediction variance

)

2See Vardeman’s notes online for details
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The Role of Feature Selection
Modeling and Fitting Penalties and the "Richness" of a Feature Set

That both model flexibility (encoded in the size of S) and fitting impact
predictor performance is related to the fact that effective selection of p
features is critical. The "richness" of a set of features representing
information available for prediction limits the potential effectiveness of
prediction, inadequate richness producing big model bias. But if richness
is bought at the expense of very large p, then one has a "needle in a
haystack" when looking for a good predictor, and poor fitting properties
often ensue.3

3If one were infinitely wise, one would pick a single feature that was a perfect
predictor of y . If one were completely inept, none of many features one invented would
be of any help in prediction. Real analysts are typically neither infinitely wise nor
completely inept, and good up-front definition of sensible features together with use of
the tools of these slides results in effective real world prediction.
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Predicting Predictor Performance in Supervised Learning
In-Sample or Training Error

To choose between predictors or classifiers, one might hope to estimate
Err for each and choose one minimizing the estimated error. The most
obvious way to try to do this is using the "training error"

err =
1
N

N

∑
i=1
L
(
f̂ (xi ) , yi

)
In SEL problems this is an empirical mean squared error and in 0-1 loss
classification it is an empirical/training set classification error rate.

But err is not a good estimator of Err. It typically decreases monotonically
with increased complexity (without increasing for large complexity), and
fails to reliably indicate performance outside the training set.
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Performance and Complexity in Supervised Learning
Training Error and Err

The cartoon below illustrates the problem faced in choosing a predictor.
err decreases with increased complexity ("low bias" in SEL problems)
while Err decreases and then increases. One wants a predictor with
approximately optimal complexity (e.g. in light of the "variance-bias
trade-off" in SEL problems) and err provides no direction.
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Predicting Predictor Performance
Methods

Existing options for reliably evaluating likely predictor performance (and
guiding choice of complexity) are:

1. Employing other (besides err) training-data based indicators of likely
predictor performance, like Mallows’Cp , "AIC ," and "BIC ."

2. In genuinely large N contexts, holding back some random sample of
the training data to serve as a "test set," fit to produce f̂ on the
remainder, and using

1
size of the test set ∑

i∈ the
test set

L
(
f̂ (xi ) , yi

)
to assess likely predictor performance.

3. Employing sample re-use methods like cross-validation or the
bootstrap to estimate Err.
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Predicting Predictor Performance
Cross-Validation

K -fold cross-validation consists of:

1. Randomly breaking the training set into K disjoint roughly equal-sized
pieces ("folds"), say T1,T2, . . . ,TK ,

2. Training on each of the "remainders" T−Tk , to produce K
predictors f̂ k , and

3. Letting k (i) be the index of the fold Tk containing training case i ,
and computing the cross-validation error

CV
(
f̂
)
=
1
N

N

∑
i=1
L
(
f̂ k (i ) (xi ) , yi

)
One hopes that CV

(
f̂
)
approximates Err. Where computationally

feasible, averaging results from repeated cross-validations mitigates the
arbitrariness of the single random partition of .T.

Stephen Vardeman (Analytics Iowa LLC) Statistical Machine Learning-2 January 2020 16 / 20



Predicting Predictor Performance
Cross-Validation

Below is a graphic suggesting roughly how (after putting the N cases into
a random order) one breaks T into folds and computes the part of sum
defining CV

(
f̂
)
for cases in the first fold. (Of course, slightly different

pictures are needed for the sums from the other K − 1 folds.)
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Predicting Predictor Performance
Choice of K for Cross-Validation

K = N is called "leave one out (LOO)" cross-validation. In this case
there are sometimes slick computational ways of evaluating CV

(
f̂
)
.

Cross-validation actually estimates Err for a training set of size
approximately N

(
1−K−1

)
, so there is potential bias4 that typically

decreases with increasing K . The statistical folklore has been that LOO
cross-validation also tends to have large variance as an estimator of Err
and so consideration of a bias-variance trade-off for representation of Err
by CV

(
f̂
)
has made K = 5 and K = 10 standard choices in practice.

But recent work by Zou and Wang has called this folklore into question
and points strongly to the choice of K = N (LOOCV) where it is
computationally feasible.

4For the use to which the cross-validation error is put, bias is a problem only if it is
not constant across choices of predictors and their complexities.
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Predicting Predictor Performance
A Caution: COMPLETE/SEPARATE Calculation is Required for EACH Remainder

It is important to emphasize that all of whatever will be done with a
training set to produce f̂ must be done separately (thus K times) in each
of the remainders T−Tk , to produce the predictors f̂ k . It does not
suffi ce to somehow use the entire data set once to cover a first step in
predictor development and then subsequently operate separately in the
remainders. IN PARTICULAR, any "preprocessing" of training data T
that will be done to make f̂ must be redone for every T−Tk , to produce
the f̂ k .

As a very simple illustration, if columns of a matrix of predictor values are
to be standardized before fitting f̂ , columns of the smaller matrices of
predictor values in T−Tk must be separately standardized before fitting
the f̂ k . One cannot simply use part of standardized columns of predictors
made from the entire training set.
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Predicting Predictor Performance
Again: COMPLETE/SEPARATE Calculation is Required for EACH Remainder

This is a big deal. The effect of failing to redo all calculations that
depend upon values in the training set separately in every remainder is to
ultimately use the entire training set in making each f̂ k . This is exactly
what cross-validation is intended to avoid! Almost always when this issue
is ignored, a supposed cross-validation error is too optimistic.

The practical pressure to "cheat" here is strong, particularly where
complicated "custom" data preprocessing is involved. But if the
preprocessing is data-dependent (exactly what is done depends upon the
numbers in all cases represented in T) there is no avoiding the issue. A
little experience will teach the hard lesson that if it is ignored the resulting
"CV

(
f̂
)
" values are completely unreliable as guides in predictor selection.
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Mean to SLR to MRL to ... k-NN
A Spectrum of Possible Predictors

To introduce thought processes of modern predictive analytics and give a
first look at a highly flexible predictor, consider SEL prediction of a
quantitative y based on a p-dimensional input x = (x1, x2, . . . , xp). Many
predictors are possible, including (roughly in order of increasing
"complexity")

1. ŷ = ȳ

2. simple linear regression prediction based on a single xj
3. multiple linear regression prediction based on some xj s

4.
...

5. k-nearest neighbor predictors.

1 through 3 above should be familiar. 4 will be filled-in in subsequent
sessions. "k-nearest neighbor" is possibly the most flexible SEL prediction
method available.
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k-NN Predictors
Local Averaging of Training Set Responses

The idea of nearest neighbor prediction is to approximate the theoretical/
long-run mean y at input vector x, using a training-set-mean "near" x
(typically there will be few or no cases with input vector exactly x, and
hence the "near"). For "nearness" to be unit-free/meaningful we’ll assume
that inputs have been standardized. The k-neighborhood of x is the set of
k training cases with xi closest to x in <p and the corresponding predictor
is

f̂ kNN (x) =
1
k ∑
i s.t. xi is in the
neighborhood

yi

Two hypothetical nearest neighbor predictions for a p = 2 case are
illustrated on the next slide.
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k-NN Predictions
p=2 Toy Example

Figure: 5 Nearest Neighbors of x and f̂ 3NN and f̂ 5NN
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Comparing Predictors on a Real Case
Ames Housing Data Set

Sales prices and values of 14 predictors for 88 homes sold in Ames, Iowa
2002-2003 are in a data set on the page:

http://www.public.iastate.edu/~vardeman/stat342/stat342.html

The R package caret can be used to do repeated cross-validation for
ordinary regression, k-NN fitting (this latter with variables correctly newly
standardized for each fold), and many other prediction methods as well.
Some results comparing predicted performance for the sample mean, 3
different simple linear regressions, the full multiple linear regression, and
several k-NN fits are on the next slide. Among the linear models, the
constant is less complex than any single SLR, each of which is less
complex than the MLR. k-NN fits decrease in complexity as k increases.
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Comparing Predictors on a Real Case
Fits to the Ames Housing Data

Predictor
8-Fold CV
RMSE

LOOCV
RMSE

Predictor
8-Fold CV
RMSE

LOOCV
RMSE

5NN 22181 23410 ȳ 36491 37567
6NN 21799 23448 SLR(land) 33577 34495
7NN 21245 22177 SLR(fireplace) 28668 28847
8NN 21540 22409 SLR(size) 27608 28452
9NN 21537 22886 MLR(all) 22335 22600

Among the predictors considered here, the 7NN predictor appears to have
the most appropriate level of complexity and the corresponding smallest
cross-validation errors. It seems better than the less complex 8 and 9NN
predictors and the more complex 5 and 6NN predictors. The simple mean
and 3 SLR predictors are too simple and even the overall MLR is not as
good as the 7NN predictor.
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NN Prediction
Large p Limitations and Value

Nearest neighbor prediction does extremely well in the Ames Housing Price
problem despite the fact that N = 88 is not so large relative to p = 14.
Often its usefulness is restricted to very large N and small p problems.
(The curse of dimensionality means that in a complex large p problem,
"neighbors" are rarely "close" and can thus often fail to well-represent
each other.)

NN predictors

1. are easy to understand and point in the direction of what one needs
to do to make good predictions,

2. provide a kind of "most flexible possible" predictor, and

3. together with various linear regressions provide a first look at
cross-validation and the importance of matching predictor
methodology to the real information content of a dataset.
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What if y Isn’t Linear in x?
"Improving on" a Raw Variable, x

Below is a plot of Price versus Basement square feet for the Ames house
data (blue dots). Price is only very approximately linearly related to
Basement size. Red dots represent values of a smooth transform (whose
development is enabled by "large N" relative to 1-D) of basement
area that might be a better predictor than area itself.
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More Flexible Forms From x
Standard "Transformations"

"Transformations" of a 1-D predictor x are standard in regression analysis.
Linear combinations of functions

1, x , x2, x3, . . . are used to make polynomials in x

1, sin 2πx , cos 2πx , sin 4πx , cos 4πx , . . . are used to fit periodic
relationships between x and y

I [x ≥ c1] , I [x ≥ c2] , I [x ≥ c3] , I [x ≥ c4] , . . . for constants
c1 < c2 < c3 < · · · can be used to fit (step-function) relationships
between x and y constant on intervals [cj , cj+1)
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More Flexible Forms From x
Transforming "Basement"

5th degree polynomial and step function predictions (for c1 = 200, . . . ,
c6 = 1200) are in black below. The former are unpleasant because of
poor extrapolation properties and the latter because of discontinuities and
lack of good ways of choosing the number and locations of the ci .
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More Flexible Predictors From x
Other "Basis" Functions

For "big data" purposes there are better sets of "basis functions"
(transformations) for linear fitting than those on panel 3. And beyond
their direct use, they arise indirectly in "smoothing spline" technology
(that produced the "red" predictions). Because they are related to
flexible and smooth prediction, we next briefly consider them.

hc (x) = (x − c) I [x > c ] is a "hinge function" located at c . It is (as
below) 0 to the left of c and increasing with slope 1 from x = c .
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More Flexible Predictors From x
Piecewise Linear Regression Splines

For some set of "knots" c1 < · · · < ck one form of (piece-wise linear)
regression spline predictor is a linear combination of hinge functions and
the functions 1 and x . These are of the form

α+ β0x +
k

∑
j=1

βjhcj (x)

(that for fixed cj s can be fit using a MLR program). A fitted version of
this kind of predictor for Price and Basement (for c1 = 200, . . . ,
c6 = 1200) is plotted on the next slide. The predictor is continuous and
linear between knots. It has esthetic deficiencies in terms of lack of
smoothness and extrapolation properties.
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More Flexible Predictors From x
One Piecewise Linear Regression Spline for the Housing Data

The "corners" on the plot are sharp changes in derivative at the knots.
They can be smoothed out by changing the set of basis functions to
1, x , x2, and a series of squared hinge functions h2cj (x).
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More Flexible Predictors From x
One Piecewise Quadratic Regression Spline for the Housing Data

For the same set of knots, this set of 9 basis functions produces the fitted
piecewise quadratic regression spline predictor below. This is
smoother, but little more attractive than the previous (piecewise linear)
predictor.
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More Flexible Predictors From x
Sources of Bad Behavior in the Example—And 1-D Smoothing

The unappealing appearance of the piecewise polynomial regression spline
predictor comes from 3 interacting sources

The locations of the two extreme knots

The fact that the predictor is quadratic to the left of the 1st knot and
to the right of the last one

The fact that the fitting was done by least squares

We proceed to a form of modern prediction that behaves far better than
piecewise polynomial regression splines with arbitrarily chosen knots. This
is the technology of smoothing splines.
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1-D Smoothing Splines
A Function Optimization Problem

For a (complexity) penalty weight λ > 0, consider (for a ≤ min {xi}
and max {xi} ≤ b) an f̂λ minimizing (over choices of functions g on [a, b]
with second derivative g ′′)

N

∑
i=1
(yi − g (xi ))2 + λ

∫ b

a

(
g ′′ (x)

)2 dx
Such an f̂λ must be a piecewise cubic regression spline constrained to
be linear outside [min {xi} ,max {xi}] with knots at distinct training
set values xi . For {b1, b2, . . . , bN} a (data-dependent) set of basis
functions for such splines (assuming that the N values xi are all different)

f̂λ (x) =
N

∑
j=1

β̂λjbj (x)

where the β̂λj depend upon λ.
Stephen Vardeman (Analytics Iowa LLC) Statistical Machine Learning-4 January 2018 10 / 16



1-D Smoothing Splines
Basis Functions and Related Matrices

The b1, b2, . . . , bN can be linear combinations of the N + 4 functions

1, x , x2, x3, h3x1 (x) , h
3
x2 (x) , . . . , h3xN (x)

where the linear combinations are chosen to enforce the "linear outside
[min {xi} ,max {xi}]" condition.

Further, with matrices

H
N×N

= (bj (xi )) giving data-dependent transforms of the xi

Ω
N×N

=
(∫ b

a b
′′
j (t) b

′′
l (t) dt

)
collecting integrals of products of

second derivatives of the basis functions

the vector of coeffi cients βλ ∈ <
N minimizes quadratic function

Q (β) = (Y−Hβ)′ (Y−Hβ) + λβ′Ωβ
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1-D Smoothing Splines
Fitting and Predictor Complexity

This is not ordinary least squares, but rather penalized (by the
quadratic form β′Ωβ ≥ 0) least squares fitting ! Without the penalty,
this would simply be MLR with matrix of predictors H. But as it is,

β̂λ =
(
H′H+ λΩ

)−1H′Y
and as λ goes from 0 to ∞ the (smoothing spline) predictor goes from
MLR (with matrix of predictors H) that interpolates the training data to
simple linear regression on x .

The wide variety of smoothing splines for the Price versus Basement data
on the next panel illustrates the effect of λ on the nature of the predictors.
(Plots for λ = ∞, 20000000, 200000, and 2000 are shown.)
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1-D Smoothing Splines
Splines for the Ames Housing Data and Complexity

λ is clearly a complexity parameter ... and can be chosen by cross-
validation.
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1-D Smoothing Splines
Cross-Validation and Choice of Smoothing Spline

Red dots on earlier plots correspond to λ ≈ 10600000. LOOCV suggests
the slightly more linear spline for λ ≈ 20000000. Below, data are in blue,
red points are as before, and black points are for the LOOCV choice.
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Other 1-D Smoothing Methodology
Locally Weighted Means and Polynomials

A popular and effective alternative to 1-D smoothing splines is "weighted
local regression." Because smoothing splines already begin to indicate
what is possible and make somewhat better connections to other methods
of prediction to be discussed here, we will not present this alternative.
But spline and local regression technologies are somewhat interchangeable
and often give similar results (at least when values of x are more or less
uniformly distributed).
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Smoothing for p>1
Direct Creation of Smooth Flexible p-Dimensional Predictors

There is a 2-dimensional analogue of 1-D smoothing splines that is known
as "thin plate splines" (that involves penalized fitting of a specific kind of
"radial basis function network"). And there is a natural p-dimensional
version of locally weighted regression smoothing.

But direct application of smoothing methods generally becomes more and
more problematic as p grows. The curse of dimensionality sets in, the xi
in a training set are of necessity sparse in <p (unless they themselves are
highly internally structured) and direct smoothing works less and less
effectively. Something else must be done to create effective flexible
p-dimensional predictors for large p.
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Building Flexible Predictors When p is Large
Hints from Smoothing

Unless p is very small, direct application of smoothing to the entirety of x
is typically not effective. But some of the ideas met in low-dimensional
smoothing can be part of practical solutions to the problem of developing
effective predictors without suffering from over-fitting.

We next consider two paths to practical development of flexible predictors
for large p and provide brief introductions to multivariate adaptive
regression splines (MARSs) and to generalized additive models (GAMs).
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Multivariate Adaptive Regression Splines (MARS)
Hinge/"Hockey-Stick" Functions and Their Products

Motivated by 1-D regression- and smoothing- spline developments, MARS
is a high-dimensional forward-selection-regression spline-like methodology
based on "hockey-stick" functions and their products as data-dependent
basis functions in p-D.

MARS uses data-dependent basis functions built on (1 and) the Np pairs
of functions of x ∈ <p (based on 1-D hinge functions)1

gij+ (x) = (xj − xij )+ = hxij (xj ) and

gij− (x) = (xij − xj )+ = (xij − xj ) + hxij (xj )

MARS builds predictors sequentially, making use of these "reflected pairs"
(portrayed on the next slide).

1xij is the jth coordinate of the ith input training vector and both gij+ (x) and
gij− (x) depend on x only through the jth coordinate of x. The notation (z)+ is
short for z · I [z > 0].

Stephen Vardeman (Analytics Iowa LLC) Statistical Machine Learning-5 February 2020 3 / 15



MARS
Reflected Pairs and Model Building

Below are representations of how the functions (of x ∈ <p) gij+ (x) and
gij− (x) depend upon xj .

Exactly how to build up (in a forward selection fashion) a linear
combination these functions and various products of them is the "special
sauce" of any particular MARS implementation. (There are variable
selection, variable deletion, and stopping rules to be chosen.)
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MARS
Versions

Some versions of MARS begin by identifying a reflected pair gij+ (x) and
gij− (x) so fitting by ordinary least squares

β̂0 + β̂11gij+ (x) + β̂12gij− (x)

has the best SSE possible. Call the selected functions

g11 = gij+ and g12 = gij−

and set
f̂1 (x) = β̂0 + β̂11g11 (x) + β̂12g12 (x)

Other implementations begin with a best single hockey-stick function
g1 (x) in place of a pair, and f̂1 (x) = β̂0 + β̂1g1 (x).
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MARS
More Sequential Model Building

With a predictor f̂l (x) in hand, a MARS implementation considers for
addition to the set of basis functions being used, an additional reflected
pair (or single hockey-stick function) or a pair (or single function) produced
by multiplication of a reflected pair (or single function) by a basis function
already being employed. This consideration will typically be subject to

the constraint that no xj appears in any candidate product more than
some fixed number of times2

an upper limit on the order of the products considered for inclusion

The best candidate pair (or single function) in terms of reducing SSE is
added to the set of basis functions and a next predictor f̂l+1 (x) is fit by
least squares.

2Allowing no xj to appear more than once maintains the piece-wise linearity of
sections/slices of the predictor.
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MARS
More Sequential Model Building

According to some stopping criterion (typically phrased in terms of a
minimum fractional reduction in SSE = N · err or some inside-MARS
"generalized cross-validation error" criterion) one ends forward selection
with a suitable l no more than some user-specified maximum value. Some
implementations then consider backward elimination of terms once forward
selection is ceased.
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MARS
Cross-Validation

Whatever "special sauce" is built into a particular MARS algorithm,
user-supplied parameters ultimately determine the final predictor. Cross-
validation must be applied outside the algorithm, optimizing a
cross-validation error over choices of the parameters.

For example, if a particular implementation of MARS allows one to set 1)
an upper limit on the final number of terms in the model, 2) an upper
limit on the number of times that any xj can appear in a product of hinge
functions, and 3) an upper limit on the order of any product of hockey
stick functions, cross-validation and optimization across combinations of
values of these variables (holding out one fold at a time and running the
algorithm on the remainder).

The train() function in the caret package will cross-validate the MARS
routine in the earth package across values of 1) and 3).
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MARS
Ames Housing Data

Running the train function in the caret package on the earth routine
over all limits on numbers of terms in a final model 1 to 20, with
maximum orders of model products 1 to 3 (using 8-fold cross-validation
repeated 20 times) produced the choices of 4 terms in the final model with
first order products only, and ultimately the predictor

f̂ (x) = 146100− 66.118 (1866− Size)+
+ 37.124 (Size− 1866)+ + 38204 (Fireplace− 1)+

Since "Fireplace" (count) is discrete, picturing response as a function of
continuous input variables is a bit artificial, but for purposes of illustrating
the kinds of functions that are produced as MARS predictors, the plot on
the next slide represents the function above.
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MARS
MARS Predictor for Ames House Price Chosen by Cross-Validation in earth()
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Another Direction
Additive Forms

The possibility of effective smoothing in 1 or 2 (or possibly 3) dimensions
suggests the possibility of fitting predictors of the form

f̂ (x) = α+
p

∑
j=1
gj (xj )

or even

f̂ (x) = α+
p

∑
j=1
gj (xj ) + ∑

some
j ,j ′

gjj ′ (xj , xj ′)

to a training set with x ∈ <p where the functions gj and gjj ′ are arbitrary
smooth functions of their univariate or bivariate arguments. (This can be
done via algorithms that in sequence iteratively smooth residuals from a
predictor including all but one term of such an additive form.)
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Generalized Additive Models (GAMs)
More Sequential Model Building

The GAM forms on the previous slide are continuous-input versions of
"main effects only" and "main effects plus some two-factor interactions"
models of factorial analysis. Details of fitting and searching among such
models for moderate-to-large p must become highly specialized and again
amount to a kind of "special sauce" for any particular implementation of
GAM fitting. But whatever the details of a particular algorithm, the
tuning parameters of that algorithm can be chosen by cross-validation
applied to the algorithm used on each remainder from a fold of the
training set.
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GAMs
Ames House Price Example

The size of the Ames house price data set (N = 88) is small for fitting of
even additive models in single input variables, let alone for trying to
include smoothed functions of 2 or more variables in modeling. (GAM
routines crash when trying to push the modeling beyond what is feasible
for a given dataset size.) Applying the train() routine from the caret
package with LOOCV to the gam() routine in the gam package, the
variables "Finished Basement," "Basement Total," "Land" and "Size" are
the only ones identified as candidates for smoothing (the other predictors
enter a fitted GAM predictor linearly). When such a model is specified in
gam() from the mgcv package, specifying spline smoothing returns
non-linear components for 3 of the 4 variables. Finally, fitting a model
linear in all predictors except "Finished Basement," "Land" and "Size"
and allowing for arbitrary smooth versions of those variables produces
what is represented on the next slides.
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GAMs
Ames House Price Example Non-Linear Additive Predictor Components

The plots below provide non-linear smooth functions of the Finished
Basement, Land, and Size variables that are more or less "automatically
produced features"/transforms for the original variables.
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GAMs
Ames House Price Example

Ultimately, the predictor fit by gam() from the mgcv package is

f̂ (x) = 20402+ 16730Garage+ 1971MutipleCar+ 1774BedRooms
+ 9033CentralAir+ 12794Fireplace+ 19140FullBath

+ 17125HalfBath+ 44.85BasementTotal+ 21074BsmtBath

+ 8058Style2Story− 1304ZoneTownCenter+ g1 (FinishedBsmt)
+ g2 (Land) + g3 (Size)

The fitted smooth functions of Finished Basement, Land, and Size show
the effects of changing one of those variables (with all others held fixed).
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Non-OLS Linear Predictors
Introduction

There is more to say about the development of a linear predictor

f̂ (x) = β̂0 +
p

∑
j=1

β̂jxj

for an appropriate β̂ ∈ <p+1 than what is said in MLR (where ordinary
least squares is used to fit the linear form to all p input variables or to
some subset of M of them).

We next consider non-OLS choices of β̂. As in the spline smoothing
material for p = 1, we find that penalization methods produce whole
spectra of predictors of varying flexibilities, and cross-validation can
be used to match predictor flexibility to training set information
content.
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Non-OLS Linear Predictors
Framework

An alternative to seeking a suitable level of complexity in a linear
prediction rule through subset selection and ordinary MLR is to employ a
shrinkage method based on a penalized version of least squares to choose
a vector β̂. We consider a family of such methods, which has parameters
that function as complexity measures and allow β̂ to range between β̂ = 0
and β̂ = β̂

OLS
depending upon complexity.

The outcomes of these methods are not equivariant to scaling used to
express the input variables xj . So we assume that the output variable
has been centered (i.e. that ∑ yi = 0) and that the columns of X
have been standardized (and if originally X had a constant column, it
has been removed).
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"Elastic Net" Regression
First Formulation (Unconstrained Optimization)

One type of penalized fitting of a linear predictor is so-called "elastic net"
regression. For λ1 ≥ 0 and λ2 ≥ 0 the elastic net regression coeffi cient
vector β̂

ENet
λ1,λ2

minimizes over choice of β ∈ <p the penalized error sum
of squares

N

∑
i=1

(
yi −

p

∑
j=1

βjxij

)2
+ λ1

p

∑
j=1
|βj |+ λ2

p

∑
j=1

β2j (1)

The λ1 = 0 version of this is called "ridge" regression, the λ2 = 0
version is "lasso" (l

¯
east a

¯
bsolute s

¯
election and s

¯
hrinkage o

¯
perator)

regression, and when both λ1 = 0 and λ2 = 0 this is ordinary least
squares MLR.
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Elastic Net Regression
Equivalent Formulation (Constrained Optimization)

The elastic net unconstrained minimization problem has an equivalent
constrained minimization description. That is, for γ ∈ [0, 1] and t > 0,

the coeffi cient vector β̂
ENet
γ,t minimizes SSE (β) =

N

∑
i=1

(
yi −∑p

j=1 βjxij
)2

over choice of β ∈ <p with
p

∑
j=1

(
γ |βj |+ (1− γ) β2j

)
≤ t

For every (λ1,λ2) pair producing coeffi cient vector β̂
ENet
λ1,λ2

there is a pair

(γ, t) producing β̂
ENet
γ,t = β̂

ENet
λ1,λ2

(and the same value of SSE ) and vice
versa. The choice γ = 1 produces the lasso constraint ∑p

j=1 |βj | ≤ t
and the choice γ = 0 produces the ridge constraint ∑p

j=1 β2j ≤ t.
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Elastic Net Regression
Penalization and "Shrinkage"

Large t (small λ1 and λ2) is little penalization. Small t (large λ1 or λ2) is
large penalization. The overall effect of penalization is to "shrink"
the ordinary least squares coeffi cient vector towards the origin in
<p .1 In turn, this implies that centered predictions f̂ (xi ) are shrunken
towards 0 and uncentered predictions are shrunken towards ȳ .

More qualitative insight concerning the nature of elastic net shrinkage can
be had from consideration of the geometry of constraint regions. Some
representations of p = 2 constraint regions for t = 3 (made using some
code of Prof. Huaiqing Wu) are on the next slide. As γ goes from 1 to 0
the elastic net constraint region goes from (rotated) square to circular.

1This is completely obvious in the constrained formulation, in that small t means

that β̂
ENet
γ,t (which is inside the constraint region) must be small.
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Elastic Net Regression
Geometry of Constraint Regions

The obvious "corners" on elastic net constraint regions for γ near 1 have
an interesting and attractive consequence.
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The Lasso
Geometry of Lasso Optimization

Below is a representation of the p = 2 constrained optimization problem

solved by the lasso coeffi cient vector, β̂
lasso
0,t . Corners on the constraint

region make it typical for some coordinates of the lasso coeffi cient
vector to be exactly 0.

Figure: Contours of SSE (β), the constraint region, and the OLS and lasso fitted
vectors.
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Ridge Regression
Geometry of Ridge Optimization

In contrast is the representation below of the problem solved by the ridge
coeffi cient β̂

ridge
0,t for p = 2. The lack of corners on the constraint

region makes exactly 0 fitted coeffi cients rare.

Figure: Contours of SSE (β), the constraint region, and the OLS and ridge fitted
vectors.
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Elastic Net Regression
Computation, Etc.

Only for the ridge case are there explicit formulas for elastic net regression
coeffi cients2 and in general, numerical optimization is required. The
cartoons on the previous two slides make it obvious that entries of an
elastic net coeffi cient vector do not necessarily have the same sign as the
corresponding entry of the OLS coeffi cient vector (and the sign can
change with values of the penalty parameters). The elastic net coeffi cient
vector changes continuously in the penalty parameters, and it is only in an

overall sense that β̂
ENet
γ,t converges monotonically to 0 as t → 0.

Individual entries of the coeffi cient vector are not necessarily monotone in
t. And in cases where "corners" produce exactly 0 fitted coeffi cients,
because an entry is 0 for a particular t does not necessarily imply that it is
0 for smaller t.

2An explicit matrix form for the ridge regression coeffi cient vector is

β̂
ridge
λ =

(
X′X+ λI

)−1 X′Y. This is highly reminiscent of the coeffi cient vector applied
to H to produce smoothing spline predictions.
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The Elastic Net
glmnet (Unconstrained Optimization) Parameterization

A different parameterization of the unconstrained elastic net optimization
criterion (1) used in the glmnet package is (for λ ≥ 0 and 0 ≤ α ≤ 1)
that β̂

ENet
λ,α be a vector β ∈ <p minimizing

1
2
· 1
N
SSE (β) + λ

(
α

p

∑
j=1
|βj |+

(1− α)

2

p

∑
j=1

β2j

)
(2)

It is easy enough to work out the relationships between parameter vectors
(λ1,λ2) and (λ, α) above. The pair (λ, α) clearly corresponds to

λ1 = 2Nλα and λ2 = Nλ (1− α)

in formulation (1). On the other hand, a bit of algebra shows that the pair
(λ1,λ2) there corresponds to

λ =
λ1 + 2λ2
2N

and α =
λ1

λ1 + 2λ2

here.
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The Elastic Net
Choice of Parameters

Fixing attention (wolog) on the specification of an elastic net predictor
corresponding to form (2), the ridge class of predictors is the α = 0
version of the elastic net and the lasso class is the α = 1 sub-class.
So choosing a best elastic net predictor by cross-validation over values of
both α (that controls how the penalty is apportioned between lasso and
ridge parts) and λ (that in governs the overall strength of the
penalization) will do at least as well as is possible considering only ridge or
lasso predictors.

The train() routine in the caret package will optimize cross-validation
errors across both α and λ, calling the glmnet routine (searching over a
user-specified grid of (α,λ) pairs).
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The Elastic Net
Cross-Validation on the Ames House Price Data

Some fairly extensive searching across (α,λ) pairs (using averages of 100
repeats of 8-fold cross-validations) with the caret package train()
routine has left your instructor convinced that the Ames House Price
example is one in which nothing is to be gained from using a lasso penalty
component in the elastic net. The best combination he was able to locate
had α = 0 and λ = 14000. This set of parameters can then be used in
glmnet to produce a ridge regression predictor of y .
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The Elastic Net
Perspective

The elastic net accomplishes in continuous fashion what is attempted in a
more ad hoc discrete way when one looks for good sub-models of a large p
MLR model. Unless one forces use of its lasso specialization,
cross-validation with it does not often completely eliminate many (if any)
variables xj from consideration. In that sense is usefulness as a "subset
selection" tool is perhaps oversold. But what it can do well is shrink
predictions based on a large number of features in a way that prevents
over-fit. One is then left with a good predictor that is nevertheless based
on a large p. This is potentially especially helpful in contexts where a
large number of basis functions are employed to flexibly model a
relationship between x and y .
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Tree Predictors
Binary Splitting

Tree predictors aim to split an input space <p into simple p-dimensional
"rectangular" regions within which output values for training cases
(yi s) are relatively homogeneous.

Sequential binary splitting of existing rectangles (splitting a single existing
rectangle in a tree on a single coordinate of x at each step of a search) is
employed. This is not because it is in any sense optimal but because it is
feasible to do, can be easily interpreted, and often gives excellent results.
This strategy is a forward-selection/"greedy" method for developing a
predictor constant on p-dimensional rectangles, since each split is made
without "looking ahead" at what could be achieved in a future step if a
particular not-presently-advantageous split were made immediately.
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Regression Trees
Binary Splitting (p=2 Case for Concreteness)

For example, with p = 2, one begins with a 2-D rectangle [a, b]× [c, d ]
defined by

a = min
i=1,2,...,N

xi1, b = max
i=1,2,...,N

xi1, c = min
i=1,2,...,N

xi2 and d = max
i=1,2,...,N

xi2

and looks for a way to split it at x1 = s1 or x2 = s1 so that the resulting
two rectangles minimize

SSE = ∑
rectangles

∑
i with xi in
the rectangle

(
yi − y rectangle

)2
One then splits (optimally) one of the (now) two rectangles at x1 = s2 or
x2 = s2, etc.
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Regression Trees
Predictor and Training Error

Where l rectangles in <p have been created (through l − 1 splits), and
R (x) = the rectangle to which x belongs

the tree predictor is

f̂l (x) =
1

# training input vectors xi in R (x)
∑

i with xi∈ R (x)
yi

and the training error is 1/N times

SSE =
N

∑
i=1

(
yi − f̂l (xi )

)2
To continue splitting beyond l rectangles, one of the existing rectangles is
split at a value sl on some coordinate xj to produce the greatest possible
reduction in SSE . While this is sensible, there is no guarantee that after l
splits the best (in terms of SSE ) possible set of l + 1 rectangles in <p has
been produced.
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Regression Trees
A Small p=2 Hypothetical Case

For sake of illustration, suppose that in a p = 2 problem 0 < xi1 < 1 and
0 < xi2 < 1 for all N training cases and:

1. a first split is made on x1 at .3, producing rectangles R1 where
xi1 ≤ .3 and mean output is ȳ1 = 7 and R2 where xi1 > .3 and mean
output is ȳ2 = 15,

2. a second split is made by splitting R1 on x2 at .6, creating
(sub-)rectangles R3 where xi2 ≤ .6 and mean output is ȳ3 = 5 and R4
where xi2 > .6 and mean output is ȳ4 = 8,

3. a third split is made by splitting R2 on x1 at .7, creating
(sub-)rectangles R5 where xi1 ≤ .7 and mean output is ȳ5 = 17 and
R6 where xi1 > .6 and mean output is ȳ6 = 12,

4. a final split is made by splitting R6 on x2 at .2, creating
(sub-)rectangles R7 where xi2 ≤ .2 and mean output is ȳ7 = 10 and
R8 where xi2 > .2 and mean output is ȳ8 = 13.
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Regression Trees
Representations of the Small p=2 Hypothetical Case

Below are two representations of the hypothetical p = 2 tree predictor.
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Regression Trees
Perspective Plot for the Small p=2 Hypothetical Case

Below is a perspective plot companion to the representations on the
previous slide.
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Regression Trees
Choosing Tree Complexity and Cross-Validation

So how does one find a tree of appropriate complexity? One direct
possibility is to consider only trees met in forward-selection-tree-making,
and treat the number of splits/final nodes in the tree as a complexity
parameter. Cross-validation can be used to compare numbers of splits
and thus choose one for use with the whole training set. This can be done
using the train() function in caret. But something better is possible.

One can build a large tree in forward-selection fashion and then effi ciently
find a nested sequence of "pruned" optimal sub-trees of the large
tree

1. parameterized by another complexity parameter, and
2. potentially containing sub-trees better than ones of the same number
of nodes met in the forward-selection process.

"Grow and prune to a given complexity" can then be subjected to cross-
validation.
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Regression Trees
Penalized Error Sum of Squares and Pruning

For T a sub-tree of some fixed large tree T0 (e.g. grown until splitting any
rectangle optimally would put less and 5 training cases xi in one resulting
part) and λ > 0 define the penalized error sum of squares

Cλ (T ) = SSE (T ) + λ |T |

(for |T | the number of final nodes in T and SSE (T ) the error sum of
squares for the predictor). Write T (λ) for the sub-tree of T minimizing
Cλ (T ) and let f̂λ be the corresponding predictor.

How to find a sub-tree T (λ) optimizing Cλ (T ) (without making an
exhaustive search over sub-trees for every different value of λ) has a
workable answer. There is a relatively small number of nested candidate
sub-trees that are the only ones that are possible minimizers of Cλ (T ),
and as λ increases, T (λ) moves through that sequence of sub-trees from
the largest/original tree to the smallest.
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Regression Trees
Optimal Sub-trees

While we won’t give details of exactly how the nested sequence of
sub-trees is produced, they are not particularly hard. The function of λ,

Cλ (Tλ) = min
T
Cλ (T )

and the optimizing nested sequence of sub-trees can be computed very
effi ciently. λ is a complexity parameter with |T (λ)| decreasing in λ.1

It parameterizes good elements of a much larger set of trees than are
reached in forward selection tree-building and is similar in spirit to the
complexity parameters associated with spline smoothing and penalization
methods like elastic net prediction. It is an excellent guide through the
very large class of binary tree predictors.

1As the continuous variable λ goes from 0 to ∞ there will typically be integer values
"skipped" by |T (λ)|. Not every possible number of final nodes has a corresponding
sub-tree optimizing the penalized training error Cλ.
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Regression Trees
Cross-Validation and Choice of a Tree

Cross-validation based on cost-complexity can proceed as follows. For
each of K remainders (T−Tk in the notation of the original description
of cross-validation)

1. grow a tree on T−Tk as far as possible subject to the final node with
the fewest training xi containing at least 5 or less such points, then

2. "prune" the tree in 1. back by for each λ > 0 minimizing over
choices of sub-trees, the quantity

C kλ (T ) = SSEk (T ) + λ |T |

(for T a candidate tree and SSEk (T ) the T−Tk error sum of
squares for the corresponding predictor). Writing Tk (λ) for the
sub-tree minimizing C kλ (T ) let f̂

k
λ be the corresponding predictor.
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Regression Trees
Cross-Validation Choice of Tree

3. Then (as in the original description of cross-validation), letting k (i)
be the index of fold Tk containing training case i , and compute the
cross-validation error

CV (λ) =
1
N

N

∑
i=1

(
f̂ k (i )λ (xi )− yi

)2
For λ̂ a minimizer of CV (λ), one then operates on the entire training set,
growing a tree as far as possible, subject to the final node with the fewest
training xi containing at least 5 training cases, then finding the sub-tree,
say T

(
λ̂
)
, optimizing Cλ̂ (T ) = SSE (T ) + λ̂ |T |, and using the

corresponding predictor f̂λ̂.

The train() function in caret will do this cross-validation and selection
of λ̂ based on the rpart tree-building package.
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Regression Trees
Ames Housing Example

The train() function in caret was used to cross-validate and optimize
tree predictors of Ames House Price, using 100 repeats of 8-fold
cross-validation. The complexity value of λ ≈ .007 is indicated. Using
the whole training set with this complexity parameter, a tree with 6 nodes
is produced. This is illustrated below.
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Regression Trees
Comments on Transformations and on Ordinal Inputs

The rectangle-building process used in making a regression tree is such
that making monotone transformations of any or all of the
coordinates of an input x have no effect on the ultimate predictor.
(That is, all inputs would have the same predictions with or without
transformation before tree-building.) So in some sense the regression
tree idea simplifies predictor-building by eliminating the question of
whether some other scale should be used to express a given input xj .

This fact also means that trees handle ordinal input variables in a way
that preserves and employs orderings of their values without making
unjustifiable assignments of scale to those values (that potentially prevent
effective use of the information such inputs carry).
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Regression Trees
More Perspective

CART technology (at least where a reasonably small tree is ultimately
produced) has the very strong point of being highly interpretable by
even very non-quantitative consumers of data analytics

The tree-growing methods here employ "one-step-at-a-time"/
"greedy" (unable to defer immediate reward for the possibility of later
success) methods. They are not guaranteed to follow paths through
the set of trees that ever get to "best" ones since they are
"myopic"/"greedy" never considering what "might be" later in a
search if a current step were taken that provides little immediate
payoff

Conventional wisdom is that the tree splitting algorithm "favors"
splitting on continuous input variables over splitting on values of
discrete ones
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Bootstrap Samples and "Bagging"
"Resampling" the Training Set Repeatedly, Fitting, and Averaging

A way to try to prevent a prediction methodology from producing f̂ "too
sensitive" to exact characteristics of a training sample is to employ
"boostrapping." This involves some large number, B, of "bootstrap"
samples of size N from the training set T. Each of these, T∗1,T

∗
2, . . . ,T∗B ,

is a random sample with replacement of size N from T. Applying a fixed
method of prediction B times produces for each b = 1, . . . ,B

predictor f̂ ∗b based on T∗b

"Bootstrap aggregation" or "Bagging" for SEL is then the use of

f̂ Bbag (x) ≡
1
B

B

∑
b=1

f̂ ∗b (x)

The hope is to average (not-perfectly-correlated as they are built on not-
completely-overlapping bootstrap samples) low-bias/high-variance
predictors to reduce variance (while maintaining low bias).
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(Large B) Convergence of a Bagged Predictor
The Limiting Bagging Predictor

Even for fixed training set T and input x a bagging predictor f̂ Bbag (x) is
random (varying with the selection of the bootstrap samples). Let E∗

denote averaging over the creation of a single bootstrap sample and f̂ ∗ be
the predictor derived from such a bootstrap sample. Then

E∗ f̂ ∗ (x) = f̂bag (x)

is the "true"/large-B bagging predictor1 with simulation-based
approximation f̂ Bbag (x).

(f̂ Bbag (x)→E∗ f̂ ∗ (x) = f̂bag (x) as B → ∞ by the law of large numbers.)

1Unless the operations applied to a training set to produce f̂ are linear, E∗ f̂ ∗ (x) will
differ from the predictor computed from the full training data, f̂ (x).
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Out of Bag Error
Cases Missed in a Bootstrap Sample from the Training Set

Any particular bootstrap sample T∗b fails to contain (on average) about
37% of training cases, that might be called an out-of-bag (OOB)
sample. OOB samples can serve as test sets for bagged predictors. More
precisely, it is common to make (and plot versus B) a running-cross-
validation estimate of error (Err) based on out-of-bag (OOB) samples.

That is, suppose that for each b the set of indices I (b) ⊂ {1, 2, . . . ,N}
for which the corresponding training cases are OOB (not included in the
bootstrap training set T∗b). Let

ŷ ∗iB =
1

# of indices b ≤ B such that i ∈ I (b) ∑
b≤B such that i∈I (b)

f̂ ∗b (xi )

Then an estimate of Err for the bagged predictor f̂bag is

OOB (B) =
1
N

N

∑
i=1
(yi − ŷ ∗iB )

2
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Plotting the OOB Error
Convergence of the Running Estimate of Err

As B increases, one can expect f̂ Bbag (x) to better approximate its limit
f̂bag (x) and OOB(B) to better approximate Err for f̂bag (x). So plotting
OOB(B) versus B and determining when B is large enough that OOB(B)
seems to have leveled off at some limiting value is a common way of
determining when both 1) the extra/non-intrinsic noise introduced into the
creation of a predictor by the bootstrap sampling has been averaged away
and 2) a reliable measure of effi cacy for the bagged predictor has been
arrived at.
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Bagging Trees
Trees and Trees With Random Restrictions on Splits

Bagging can in principle be applied to any form of SEL predictor. But in
practice, by far the most common application is to the case where the base
predictors that are bagged are trees. And by far the most common version
of bagged tree predictor is the so-called "random forest," that involves an
unexpected variant of the kind of tree-building discussed thus far. Namely,
for every contemplated splitting of a rectangle, only a (newly) randomly
chosen subset of the p inputs are considered for splitting. A random
forest is then a bagged version of a special (randomized) tree.
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Random Forest Specifics
Single Special Trees and Their Bagged Version

With bootstrap samples T∗1,T
∗
2, . . . ,T∗B , for each T

∗
b a corresponding

regression tree is made by

1. at each node, randomly selecting m of the p input variables and
finding a single split of the corresponding rectangle over the selected
input variables that most reduces the splitting criterion, splitting the
rectangle, and

2. repeating 1 at each node up to a fixed depth or until no single-split
improvement in splitting criterion is possible without creating a
rectangle with less than a small number, nmin, of training cases.

Let f̂ ∗b (x) be the corresponding tree-based predictor.

A random forest predictor is then the bagged (specialized) tree predictor

f̂ ∗BRF (x) =
1
B

B

∑
b=1

f̂ ∗b (x)
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Random Forests
Tuning/Complexity Parameters

The basic tuning parameters in the development of f̂ ∗BRF (x) are m, and
nmin, and (if used) a maximum tree depth. m = p is the case of bagging
ordinary trees (with no restriction on which variables are candidates for
splitting). Standard default values of parameters are m = bp/3c and
nmin = 5, but they can be chosen to minimize the (large B) OOB error.
Bagging provides its own "internal" version of cross-validation and
there is no need to wrap another cross-validation around a random
forest in order to approximate Err.

In spite of the fact that for small B the (random) predictor f̂ ∗BRF is built on
a small number of trees and is fairly simple, B is not really a complexity
parameter, but is rather a convergence parameter that governs
convergence of f̂ ∗BRF to some (law of large numbers) limit f̂RF and OOB(B)
to Err.
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Random Forests
Ames House Price Example: Choice of m

The randomForest package was used to fit random forests to the Ames
House Price data for m = 1, 2, . . . , 14 (with all other parameters at their
default values). A plot of the square root of the OOB error based on
B = 50000 trees is below. The best value of m is 4 with√
OOB (50000) ≈ 22813.
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Random Forests
Ames House Price Example:Plot of OOB(B) for m=4

Below is a plot of
√
OOB (B) versus B for m = 4 in the Ames House

Price example computations presented on the previous slide. (Only values
for B = 5 to B = 10000 are plotted.) It shows the convergence of
OOB(B) far before the value of B = 50000 used to make the choice of m.
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Random Forests
Ames House Price Example Additional Details

Varying both m and nmin in randomForest applied to the prediction of
Price produces the values below for

√
OOB (50000) (rows correspond to

values of m and columns to values of nmin). The performance of a random
forest in the problem is reasonably insensitive to the choice of m ≥ 2. The
default values of m = b14/3c = 4 and nmin = 5 can be improved upon
only slightly, the completely optimal choice being m = 3 and nmin = 1.
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Random Forests
??Over-Fitting??

There is a fair amount of confusing discussion in the literature about the
impossibility of a random forest "over-fitting" with increasing B. This
seems to be related to test error not initially-decreasing-but-then-
increasing-in-B (which is perhaps loosely related to OOB(B) converging
to a positive value associated with the limiting predictor f̂RF, and not to
0). But as HTF point out on their page 596, it is an entirely different
question as to whether f̂RF itself is "too complex" to be adequately
supported by the training data, T. And the whole discussion seems very
odd in light of the fact that B is a convergence parameter, NOT a
complexity parameter. Complexity must properly refer to the limiting f̂RF
not to the approximation f̂ ∗BRF .

It is certainly possible that a random forest is more complex than a
training set can support. The result in such cases is Err and the limiting
OOB(B) being unnecessarily large.
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Random Forests
???Correlation Between Trees???

There is also a fair amount of confusing discussion in the literature about
the role of the random selection of the m predictors to use at each
node-splitting (and the choice of m) in reducing "correlation between trees
in the forest." The Breiman/Cutler web site http://www.stat.
berkeley.edu/~breiman/RandomForests/cc_home.htm says that the
"forest error rate" (presumably Err for f̂RF) depends upon "the correlation
between any two trees in the forest" and the "strength of each tree in the
forest."

Any precise/technical meaning of these is not clear. In rough/vague
terms, increasing m increases both similarity between and flexibility of the
individual trees, the first degrading Err and the second improving it.
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Combinations of "Ensembles" of Predictors
Boosting and Stacking

Bagging averages an "ensemble" of predictors (consisting of versions of a
single predictor computed from different bootstrap samples) to make a
predictor f̂bag.

Here we consider other important versions of the basic idea that multiple
predictors might be in some way combined to make a single effective SEL
predictor. The primary motivation of the first, so-called "boosting," is
the reduction of model bias through a kind of successive approximation to
a conditional mean E[y |x] function. The second, so-called "stacking,"
seeks a good function of several predictors (a "meta-predictor" or
"super-learner") that might be better than any single one in the ensemble.
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SEL Boosting
Motivation

There is a general "gradient boosting" method due to Friedman. Here we
consider the SEL special case of Friedman’s gradient boosting. The idea
is to sequentially build a good approximator for E[y |x] by successively
adding small corrections (based on modeling residuals) to current
approximators. This is parallel to many "successive approximation"
methods of numerical analysis for root finding and optimization that
repeatedly correct a current approximate root or optimizer.
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SEL Boosting
An Algorithm

A SEL boosting algorithm is:

1. Start with f̂0 (x) = ȳ .
2. With f̂m−1 (x) in hand and possible model for y − f̂m−1 (x) available,
say βmhm (x,γ) for some given form hm (·, ·) and unknown
parameters βm and γm , fit β̂m and γ̂m by least squares. (This is
approximation of the gradient of SSE (N · err for SEL) wrt Ŷ.)

3. For some "learning rate" ν ∈ (0, 1) set

f̂m (x) = f̂m−1 (x) + νβ̂mhm (x, γ̂m)

(this is an approximate gradient descent step for SSE ) and return to
step 2.

One iterates on m from 1 through some number of iterations, M. The
smaller is ν, the larger must be M for effective boosting.
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SEL Boosting
Comments

SEL boosting successively corrects a current predictor by adding to it some
fraction of a predictor for its residuals. The value ν functions as a
complexity or regularizing parameter, as does M. (Small ν together
with large M correspond to large complexity.) Boosting ends with a linear
combination of fitted forms as a final predictor/approximator for E[y |x].

Sequential modification of a predictor is not discussed in ordinary
regression/linear models contexts because if a base predictor is an OLS
predictor for a fixed linear model, corrections to an initial fit based on this
same model fit to residuals will predict that all residuals are 0. In this
circumstance boosting does nothing to change or improve an initial OLS
fit.
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SEL Boosting
Ames House Price Example

The R package gbm does SEL boosting with regression trees. It can be
used in the caret function train() to produce a cross-validated choice of
sum of regression trees. Some work with these routines on the Ames
house price data produced a CV RMSE of 22236 for a set of parameters
M = 125 and ν = .04 for boosting with trees with nmin = 6 and a
maximum tree depth of 2. These parameters produce an 8-fold cross-
validation error comparable to the best random forest OOB error (22670)
previously identified for this problem.

Allowing M to be too large for a given ν will result in overfitting. This
can be avoided by taking account of cross-validation errors. The plot on
the next slide is based on the gbm package’s option for producing cross-
validation errors. It shows several plots of the square root of 8-fold cross-
validation errors for regression trees made using ν = .01, nmin = 2 and a
maximum tree depth of 20 and makes clear the negative effect of using M
that is too large.
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SEL Boosting
Ames House Prices and the Effect of M on CV Error in Boosting
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SEL Boosting
Perspective

Boosting is a big deal. It is increasingly recognized as the single most
widely effective method of predictor development. That should be
unsurprising. To the extent that it is recognized as successive
approximation from numerical analysis (that is widely effective more or less
regardless of the form of a function being optimized) some version of it
should be effective in essentially any prediction problem. The "XGBoost"
implementation of gradient boosting has become wildly popular and is
widely seen as "the silver bullet" in public predictive analytics contests.

Blanket enthusiasm for boosting down-plays diffi culties in its
implementation. Its most effective versions have many tuning parameters,
and without careful cross-validation employed to guide their choice,
overfitting is almost guaranteed. But the burden already implicit in
cross-validation with a fixed set of parameters combined with a huge grid
of multiple values of multiple parameters to be compared can produce
enormous computational loads.
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(Ordinary) Stacking
Linear Combinations of M Predictors

Suppose that M predictors (all based on the same training data) are
available , f̂1, f̂2, . . . , f̂M . Under squared error loss, one might seek a
coeffi cient/weight vector w for which the predictor

f̂ (x) = w0 +
M

∑
m=1

wm f̂m (x) (1)

is effective. Why this can improve on any single one of the f̂ms is
"obvious," since the set of possible w includes vectors with one entry
wm = 1 and all others 0. As linear form (1) is inherently more flexible
than any one of its constituent predictor forms, it potentially provides
important reduction of model bias and improved overall prediction.
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(Generalized)
Stacking/"Meta-Predictors"/"Super-Learners"
Other Functions of M Predictors

One important way to view the stacked predictor (1) is as a linear predictor
based on M new "features" that are the values of the ensemble. That
suggests applying some standard predictor methodology to a "training set"
consisting of M vectors of predictions ... with or without some or all of the
original input variables also reused as inputs. In a relatively simple case
where no original inputs are "reused" the generalization of (1) is

f̃ (x) = f̂
(
f̂1 (x) , f̂2 (x) , . . . , f̂M (x)

)
(2)

for some appropriate prediction algorithm f̂ . As this is more general than
"ordinary" stacking, it has the potential to be even more effective than a
linear combination of the M predictors could be.
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Stacking/Super-Learners
Perspective

Stacking is a big deal. From the earliest of the public predictive
analytics contests (the Netflix Prize contest run 2006-2009) it has been
common for winning predictions to be made by "end-of-game" merging of
effort by two or more separate teams that in some way average their
separate predictions. More and more references are made on contest
forums to various strategies for combining basic predictors. Multiple-level
versions of the stacking structure are even discussed (though in truth, they
are but structured versions of the general form (2)).

While the success of some (?luckiest among a number of?) ad hoc choices
of stacking forms in particular situations is undeniable, principled choices
of forms and parameters for f in (2) involve both logical subtleties and
huge computational demands.
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Stacking/Super-Learners
Perspective

A standard recommendation for principled choice of coeffi cient vector w
for predictor (1) is to find the vector wstack minimizing over w the sum

N

∑
i=1

(
yi − w0 −

M

∑
m=1

wm f̂ im (xi )

)2
for f̂ im "the mth predictor fit to T− {(xi , yi )}, the training set with the
ith case removed." (wstack optimizes a kind of leave-one-out
cross-validation error for a linear combination of f̂m’s.)

A potential logical and computational concern here is that in this
description f̂ im cannot depend upon (xi , yi ) in any way. For example, if via
cross-validation one chooses the order of a polynomial and then fits via
least squares to produce f̂m (x), one must N times choose the order of
polynomial and fit via least squares based on T− {(xi , yi )}, not simply
refit coeffi cients for a polynomial of fixed order.
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Stacking/Super-Learners
Honest K-fold Cross-Validation

The fundamental premise of cross-validation is that whatever is going to
be done to make final predictions must be done separately K times,
once for each remainder from a fold. Scrupulous adherence to this
principle is all that stands between an analyst and completely unreliable
(and usually overly optimistic) projections of performance.

If, for example, f̂1 (x) , f̂2 (x) , . . . , f̂M (x) are combined through a random
forest, the "OOB error" developed in production of that forest is no good
indicator of Err for the super-learner (2). That is because although case i
vector of predictions

(
f̂1 (xi ) , f̂2 (xi ) , . . . , f̂M (xi )

)
may seem to be "OOB"

for a given tree, case i is used in the predictions for other cases and is thus
used in the random forest meta-prediction of case i .
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Stacking/Super-Learners
Honest K-fold Cross-Validation Continued

Again, honest cross-validation—without which reliable assessment of the
likely performance of a choice of parameters for f̂1, f̂2, . . . , f̂M and a
top-level form f̂ (with an eye to ultimately good choice of these
parameters)—is impossible, requires that

1. a training set must be split into K folds and
2. all must be redone separately K times on remainders, and used to
predict folds

in order to develop sound projections for Err. This implies a large
computational load (especially if repeated cross-validation is done) in order
to choose an effective final version of super-learner for application.

A first (and best if computational burden were no concern) version
of this is that where associated with each f̂m (x) and also with the top-level
form f̂ are grids of possible values of complexity parameters and a huge
product grid is searched for a best cross-validation error and ultimately
the optimizing set of parameters is applied to make the meta-predictor (2).
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Stacking/Super-Learners
Honest K-fold Cross-Validation Continued

A second version of this application of honest cross-validation
pertains where individually-optimized versions of the f̂m will ultimately be
combined into a form (2) and choice of complexity parameters for only the
top-level form f̂ is attempted. Notice that when algorithms represented
by the f̂m are themselves tuned (by K -fold cross-validation across some
grids of parameter values) the resulting parameters need NOT be good
ones for use in an ensemble. But they can be taken as given and search
across a grid of complexity parameters for the top level form can be done
using cross-validation errors produced according to the outline on panel 14
for each set of top-level parameters.

It is clear then that computation grows rapidly with the complexity of
constituent predictor forms, the breath of the optimization desired, and
the extent to which repetition of cross-validation is used.

Stephen Vardeman (Analytics Iowa LLC) Statistical Machine Learning-9 January 2018 15 / 16



Stacking/Super-Learners
What Form of Super-Learner?

What kind of top-level f̂ should be used in predictor (2) can be
investigated by comparison of cross-validation errors. The linear form (1)
is most common and (at least in its ad hoc application) famously
successful. There is a good case to be made that a random forest form
has potential to be at least as effective in this role. Its invariance to scale
of predictors (inherited from its tree-based heritage) and wide success and
reputation as an all-purpose tool make it a natural candidate.
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