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Optimal Classification/Pattern Recognition
Minimizing Error Rate

In classification problems where y takes values in {0, 1, . . . ,K − 1} or
{1, . . . ,K} (for the K = 2 case, the possibility {−1, 1} is also quite useful
because it simplifies some formulas) a standard loss is 0-1 loss,

L (ŷ , y) = I [ŷ 6= y ]

Expected 0-1 loss is EI [ŷ 6= y ] = PI [ŷ 6= y ], the misclassification rate,
and a theoretically optimal classifier is f (x) a k minimizing

∑
v 6=k

P [y = v |x]

or is equivalently f (x) a k maximizing

P [y = k |x]

(An optimal f (x) is a possible value for y with the largest conditional
probability given the observed value x.)
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Some Generalities
Form of the Conditional Probability of Class k

The optimal classifier is not realizable in practice. But before considering
what can be done in practice, it will be useful to make some observations
about the nature of the classification/"pattern recognition" problem and
its optimal solution that help place later specific methods into perspective.

If gk (x) is the density (or probability mass function) for x ∈ <p
conditional on y = k and

πk = P [y = k ]

then as ∑K
l=1 πlgl (x) is the marginal pdf of x, and

P [y = k |x] = πkgk (x)

∑K
l=1 πlgl (x)
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Some Generalities
Equivalent Form of an Optimal Classifier

Since ∑K
l=1 πlgl (x) doesn’t depend upon k , the forms of an optimal

classifier and the conditional distribution of y given x imply that an
equivalent form for an optimal classifier is f (x) a k maximizing

πkgk (x)

From one point of view, the prescription "x|y has density gy and y ∼ π"
has the form of an ordinary Bayes statistical model for x with "parameter"
y and prior π. In this sense, an optimal classifier is a "Bayes" classifier.
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Some Generalities
An Artificial p=1 Example

Consider an artificial p = 1 example where K = 3, π1 = .25,π2 = .25,
and π3 = .5 and the three class-conditional distributions are g1 normal
with µ1 = 0 and σ1 = 1, g2 normal with µ2 = 1 and σ2 = .5, and g3
normal with µ3 = 2 and σ3 = 1. The plot below shows the 3 functions
πkgk (x) and indicates the optimal classifier in terms of three sets of x
values corresponding to different optimal classifications.
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Some Generalities
More on the Example

To help understanding of the form of P [y = k |x] in classification models,
consider again the graphic. For a fixed x , reading off the values of
π1g1 (x) (blue), π2g2 (x) (green), and π3g3 (x) (red) from the curves, the
values P [y = 1|x ] ,P [y = 2|x ] , and P [y = 3|x ] are in proportion to
those three values. For example, since

.25g1 (1) = .0605, .25g2 (1) = .1995 and .5g3 (1) = .1210

and .0605+ .1995+ .1210 = .3810, the conditional probabilities for
y = 1, 2, 3 given x = 1 are respectively

.0605

.3810
≈ .159, .1995

.3810
≈ .523 and .1210

.3810
≈ .318
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Some Generalities
2-Class Problems and the Likelihood Ratio

Consider the K = 2-class model with the {0, 1} coding. An optimal
classifier can be written as

f (x) = I [π1g1 (x) > π0g0 (x)] = I
[
g1 (x)
g0 (x)

>
π0
π1

]
(Again, I [statement] is 1 if "statement" is true and 0 if it is not.) The
statistic g1 (x) /g0 (x) is called the likelihood ratio statistic and is of
fundamental use in the classification model. Of course

P [y = 1|x] = π1g1 (x)
π0g0 (x) + π1g1 (x)

=

π1
g1 (x)
g0 (x)

π0 + π1
g1 (x)
g0 (x)

and the likelihood ratio and P [y = 1|x] are increasing functions of each
other.
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Some Generalities
More on 2-Class Models and the Likelihood Ratio

The likelihood ratio statistic is important in 0-1 loss versions of the
K = 2-class classification problem in that it provides an optimal function
whereby one decides whether or not to classify to class 1, large values
pointing to the classification 1. And it is fundamental from other
perspectives as well. In a 2-class model where the so-called "area under
the curve" criterion is used to judge a choice of ordering function O used
to order the values of x (and thus training cases) in terms of their
indication that a corresponding y is 1, the likelihood ratio statistic (or
anything equivalent to it like P [y = 1|x]) is optimal.
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Some Generalities
Toy Example of the Likelihood Ratio

To make clear what is meant by the ratio g1 (x) /g0 (x), below are K = 2
hypothetical probability mass functions for (p = 2) observations x. The
likelihood ratio gives the proper ordering of the 9 possible values of x for
classification purposes.

From least indicative of class 1 to most indicative, these are (2, 2) , (1, 1) ,
(1, 3) , (3, 1) , (3, 2) , (2, 3) , (3, 3) , (2, 1), and (1, 2).
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Voting Functions and 2-Class Classification
"Voting Functions"

Empirical search for a good classifier in 2-class problems is
essentially a search for a good approximation to the likelihood ratio
function g1 (x) /g0 (x). This raises the possibility of focusing on the
building of a good "voting function" v (x) underlying a classifier.

For the time being, it’s convenient to employ {−1, 1} coding of class
labels and to without essential loss of generality consider classifiers defined
for an arbitrary voting function v (x) by

f (x) = sign (v (x))

(except for the possibility that v (x) = 0, that typically has 0 probability
for both classes). An optimal voting function for 0-1 loss is the shifted
likelihood ratio

vopt (x) =
g1 (x)
g−1 (x)

− π−1
π1

(1)
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Voting Functions and 2-Class Classification
"Voting Functions" and 0-1- Loss Error Rate

With this notation, a classifier f (x) = sign(v (x)) produces loss neatly
written as

L (ŷ , y) = I [y · v (x) < 0]
(a loss is incurred when y and v (x) have opposite signs). Then, the 0-1
loss error rate has the useful representation

EI [y · v (x) < 0] (2)

A function v (x) optimizing the average value (2) is the shifted likelihood
ratio defined in (1). But the indicator function I [u < 0] involved in (2) is
discontinuous, and for some purposes it would be more convenient to work
with a continuous (even differentiable) one in making an empirical choice
of voting function.
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Voting Functions and 2-Class Classification
"Voting Functions," Continuous "Losses," and Bounds on 0-1 Loss Error Rate

If I [u < 0] ≤ h (u), it is obvious that

EI [y · v (x) < 0] ≤ Eh (y · v (x)) (3)

So with voting function v (x), the right hand side of (3) is an upper bound
for the 0-1 loss error rate of the corresponding classifier. An approximate
(data-based) minimizer (over choices v (x)) of rhs (3) can be expected to
control 0-1 loss error rate. Several continuous choices of "function-loss"
h (u) motivate popular methods of classifier development. These include

1. h (u) = ln (1+ exp (−u)) / ln (2) associated with use of logistic
regression-based estimated conditional class probabilities to make
voting functions,

2. h (u) = exp (−u) associated with the "AdaBoost" algorithm, and
3. h (u) = (1− u)+ associated with "support vector machines."
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Voting Functions and 2-Class Classification
"Voting Functions," Continuous "Losses," and Bounds on 0-1 Loss Error Rate

For sake of concreteness, below is a plot of I [u < 0] and the three
functions h (u) dominating it discussed on the previous slide.
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Voting Functions and 2-Class Classification
Optimizing Functions for Standard Expected Continuous Losses

One reason why this line of argument proves effective is that not only does
bound (3) hold, but minimizers of Eh (y · v (x)) over choice of function
v (x) for standard choices of function-loss h with I [u < 0] ≤ h (u) turn
out to be directly related to the likelihood ratio. That is, case 1. on the
previous slide has optimizing function

v ∗ (x) = ln
(
P [y = 1|x]
P [y = −1|x]

)
and case 2. has an optimizer that is 1/2 of this. Both are monotone
transformations of the likelihood ratio and when used as a voting function
produce a (0-1 loss) optimal classifier. In case 3. from the previous slide,
an optimizing function is

v ∗∗ (x) = sign (P [y = 1|x]− P [y = −1|x])

the optimal classifier itself. So empirical search for optimizers of (an
empirical version of) Eh (y · v (x)) can produce good classifiers.
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Near Neighbors and Classification
The Form of an Optimal Classifier and Near Neighbors

Consider the part of a very large sample that has x ≈ x0. The fraction of
that part that has y = k will approximate P [y = k |x = x0]. Since an
optimal classifier chooses a k maximizing this conditional probability,
choosing a k that is most heavily represented among the part of a sample
with x ≈ x0 can approximate an optimal classification at x0.

So, we’ve seen that for large training samples (and small p) in SEL
prediction problems, the average y for near neighbors of x provides an
approximation to the optimal predictor at x. Now, in classification
problems, we see that it is equally true that for large training samples
the most frequently represented class for near neighbors of x
provides an approximation to an optimal classification at x.
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Nearest Neighbor Classification
A Toy Example

Below is a cartoon illustrating 3- and 5-NN classification at x (in a 2-class
problem with the {0, 1} coding).
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Nearest Neighbor Classification
An Example from UCI Data Repository

As an example, we’ll use a version of the famous "Wisconsin Breast
Cancer Study" data set, available at https://archive.ics.uci.edu/ml/
machine-learning-databases/breast-cancer-wisconsin/ . This is a dataset
with N = 699− 16 = 683 complete cases (16 have missing entries), each
one describing p = 9 characteristics of a biopsied tumor that has been
classified as either benign (444 cases) or malignant (239 cases). The
input variables (originally on 1-10 scales) are:

x1 —Clump Thickness x6 —Bare Nuclei
x2 —Cell Size Uniformity x7 —Bland Chromatin
x3 —Cell Shape Uniformity x8 —Normal Nucleoli
x4 —Marginal Adhesion x9 —Mitoses
x5 —Single Epithelial Cell Size
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Nearest Neighbor Classification
Wisconsin Breast Cancer

LOOCV error rates for kNN classifiers for the Wisconsin Breast Cancer
data (overall in red, malignant in black, benign in blue) are below.
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Nearest Neighbor Classification
Wisconsin Breast Cancer

A more careful cross-validation exercise done (with the tune() routine in
the caret package and 100 repeats of 10-fold cross-validation)
restandardizing after removing each fold produces essentially the same
conclusions about k in this problem. This is evident in the plot below of
both the earlier LOOCV error (in red) and the more carefully made CV
error (in blue).
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Density Estimates
Motivation

The problem of describing structure for x ∈ <p might be phrased in terms
of estimating a pdf for the variable. So the problem:

based on x1, x2, . . . , xN iid with (unknown) pdf f , estimate f

is of independent interest. But of even more present importance is the
fact that an optimal 0-1 loss classifier is for x ∈ <p a k maximizing

πkgk (x)

and if one can estimate each gk (·) based on the part of a training sample
with y = k (and approximates each πk with the fraction of the training
sample with y = k) an approximately optimal classifier can potentially be
made.
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Density Estimation in 1-D
Parzen Kernel Density Estimates

Temporarily suppose that p = 1. For φ (·) the standard normal pdf (other
choices of basic "kernel" are possible, but this is most common) and a
"bandwidth" λ > 0

1
λ

φ

( · − θ

λ

)
is the normal density for mean θ and standard deviation λ. The Parzen
(kernel) estimate of a density at x , f (x), is then

f̂λ (x) =
1
N

N

∑
i=1

1
λ

φ

(
x − xi

λ

)
an average of values of normal densities centered at the xi in a training set.
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Density Estimation in 1-D
Example

Below are plots of a pdf, f (in black), a sample of size N = 100 from the
distribution and (normal kernel) density estimates made with bandwidths
λ = .2 (red),.4 (blue), and .5 (green).
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Density Estimation
Normal Kernels

A way to think about the density estimate that results from using a normal
kernel is as representing the distribution of "a random choice from the
training set perturbed by a mean 0 normal error with standard deviation
equal to the bandwidth." If the bandwidth is extremely small, the density
estimate will essentially consist of "spikes" at the xi in the training set. If
it is extremely large, the density estimate will essentially consist of a
normal density centered around the mean of the xi . Useful bandwidths
will be neither extremely small nor extremely large.

A natural generalization of this to p dimensions is to let φ (·) be a (mean
0) MVNp density. One should expect that unless N is huge, this
methodology will be reliable only for fairly small p (say 3 at most) as a
means of estimating a general p-dimensional pdf.

Stephen Vardeman (Analytics Iowa LLC) Statistical Machine Learning-11 January 2018 5 / 11



Density Estimation in 2-D
An Example of a 2-D Density

Below are two representations of a particular 2-D density (a mixture of two
bivariate Normals).
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Density Estimation in 2-D
Examples of 2-D Density Estimates

For Illustration, below are 6 samples of N = 100 observations from the
mixture density pictured on the previous slide and corresponding bivariate
density estimates made using the kde2d function in the MASS package
(and its default choice of "bandwidth" covariance matrix).
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Density Estimates and Classifiers
An Example of a Ratio of 2-D Density Estimates

The possibility of using direct estimates π̂k ĝk (x) to make approximately
optimal classifiers basically depends upon how well likelihood ratios can be
estimated. The graphic below shows for samples of N = 100 from the
bivariate density on slide 6 and from a uniform density on [−3, 3]2 a ratio
of density estimates.
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Density Estimates and Classifiers
Large p and "Naive Bayes" Classifiers

The p = 2 example used here looks reasonably hopeful, as the third graph
on the previous slide is some approximation of the original density
portrayed on slide 6 (which is proportional to its ratio to a
uniform/constant density). But the normal mixture and uniform densities
are very simple and the curse of dimensionality makes density estimation
for even moderate p (let alone estimation of ratios) highly problematic.
So direct approximation of optimal classifiers via density estimates is
rarely successful for p at all large.

One related idea that has proven to be of some use is that of estimating
only low-dimensional (small p) marginals of the gk (x)s (for which density
estimation is feasible) and making a product of them to substitute for an
estimate of the joint density (effectively acting like the input x can be
modeled as having independent pieces) in a classifier. This has been
called a "naive Bayes" classification method.
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Products of Marginals
An Example

It is easy to see that the naive Bayes idea can fail to be useful even
for small p. The density below is the marginal density for both
coordinates of x (both x1 and x2) in the bivariate example we have been
using. The next panel contrasts the original bivariate density to a density
of independence with this one as marginals.
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Products of Marginals (and "Naive Bayes")
An Example

The original density is clearly quite different from one of independence
with the same marginals.

Stephen Vardeman (Analytics Iowa LLC) Statistical Machine Learning-11 January 2018 11 / 11



Statistical Machine Learning-12
Linear Methods of Classification Part 1: Linear Discriminant Analysis

and Logistic Regression

Stephen Vardeman

Analytics Iowa LLC

January 2018

Stephen Vardeman (Analytics Iowa LLC) Statistical Machine Learning-12 January 2018 1 / 20



"Linear" Classification Rules
Generalities

Continue to suppose y takes values in {1, 2, . . . ,K}. We consider
methods of producing K -class classification rules f̂ (x) (and mostly ones)
that have sets

{
x ∈ <p |f̂ (x) = k

}
with boundaries that are defined (at

least piece-wise) by linear equalities

p

∑
j=1

βjxj = c (1)

(i.e. x′β = c). We consider probability models under which optimal
classifiers are "linear," and corresponding methods have classical
"statistical" origins and history.
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Linear Discriminant Analysis
MVN Class-Conditional Modeling With a Common Covariance Matrix

Suppose that the distribution for (x, y) has P [y = k ] = πk and the
conditional distribution of x on <p given that y = k is MVNp (µk ,Σ), i.e.
the class-conditional distributions of x|y are multivariate normal with a
common covariance matrix. It then follows that boundaries between
regions in <p where f (x) = k and f (x) = l (optimal classifications are
respectively k and l) are parts of (p − 1)-dimensional hyperplanes in <p
(the exact form of which of course depend upon the K mean vectors µk ,
the values πk , and the covariance matrix Σ).
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Linear Discriminant Analysis
An Example

Below are contour plots for K = 3 bivariate normal densities with a
common covariance matrix and the linear classification boundaries
corresponding to equal class probabilities π1 = π2 = π3.
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Practical LDA
Estimating Means and a Common Covariance Matrix

In order to use LDA formulas, one must estimate the vectors µk and the
common covariance matrix Σ from training data. The sample mean of x
vectors for cases with y = k is the obvious estimate of µk and a pooled
sample covariance matrix (made by appropriately combining sample
variances and correlations computed within the K parts of the training
sample) can be used to estimate Σ.

Where it is plausible to think of the parts of a training sample
corresponding to different classes as producing roughly "football-shaped
clouds" of input vectors x of similar shapes and orientations in <p , LDA
makes good sense. It provides hyperplanes approximately optimally
separating those clouds.
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LDA Complexity
Dimension Reduction: Forward Selection of Input Coordinates

There are many (roughly p (K + (p + 1) /2)) means, variances and
correlations to estimate in order to use linear discriminant analysis. Where
p is at all big, a training sample may not be big enough to adequately
support estimation of this many parameters and LDA based on
p-dimensional x vectors is use of a classifier that is "too complex." There
are at least two common strategies for reducing dimension or complexity.

The first method is forward selection of variables xj for discrimination.
This picks the best single coordinate of x for linear discrimination, then
next the coordinate of x that provides the greatest reduction in training
error, etc. Cross-validation can be used to choose a good value for the
ultimate dimension (≤ p) of the input vector used.
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LDA Example
Wisconsin Breast Cancer Example

The lda() function in the MASS package in R can be used to do LDA on
the Wisconsin breast cancer data. Straightforward use of all p = 9
predictors (and thus roughly 9 (2+ 5) = 63 estimated parameters) in LDA
produces LOOCV error rates of 19/239 = 7.59% for malignant cases,
8/444 = 1.8% for benign cases, and 4.39% overall.

On the other hand, 10-fold cross-validation using the stepclass()
function from the klaR package produces the values plotted below
showing that p no more than 3 would be a better choice than p = 9.

(Variables 6, then 2, then 1 are identified via forward selection.)
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LDA Complexity
Dimension Reduction: Use of a Few Canonical Variables

A second method of dimension reduction for LDA is known as "reduced
rank" LDA or "canonical variables" LDA. This involves finding a
coordinate system that describes variation among the K estimated class
means. The first coordinate axis points in the direction of the largest
variation in these means, the second (if K > 2) axis (perpendicular to the
first) points in the direction of the largest part of the remaining variation
in the means, and so on to produce min (p,K − 1) axes. Coordinates of
data points in this new coordinate system are the variables used in LDA.
The number of such coordinates employed is a complexity measure
that can be chosen by cross-validation.
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Use of Features in LDA
Basis Functions/Transforms

The form (1) is (of course and by design) linear in the coordinates of x.
An obvious natural generalization of this discussion is to consider
discriminants that are linear in some (non-linear) functions of the
coordinates of x. This is simply choosing some M basis functions/
transforms/features hm (x) and replacing the p coordinates of x with the
M coordinates of (h1 (x) , h2 (x) , . . . , hM (x)) in the development of LDA.

Upon choosing basis functions that are all coordinates, squares of
coordinates, and products of coordinates of x, one produces linear (in the
basis functions) discriminants that are general quadratic functions of x.
Or, data-dependent basis functions that are K (·, xi ) for some kernel
function K produces LDA that depends upon the value of some "basis
function network." The possibilities opened here are myriad and "the devil
is in the details."
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Logistic Regression
Form for Log Conditional Probability Ratio

The MVN distribution result that leads to LDA is that in the common
covariance MVNp model, the ratios

ln
(
P [y = k |x]
P [y = l |x]

)
are linear in x. An alternative to beginning with the model assumptions of
LDA is to simply assume that for all k < K

ln
(
P [y = k |x]
P [y = K |x]

)
= βk0 +

p

∑
j=1

βkjxj (2)

Here there are K − 1 constants βk0 and K − 1 (p-dimensional) vectors
βk = (βk1, βk2, . . . , βkp) to be specified (not necessarily tied to class
probabilities or mean vectors or a common within-class covariance matrix
for x).
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Logistic Regression
Conditionals, not Joint

The set of relationships (2) do not fully specify a joint distribution for
(x, y). Rather, they only specify the nature of the conditional
distributions of y |x.

The situation is exactly analogous to that in ordinary simple linear
regression. A bivariate normal distribution for (x , y) has normal
conditional distributions for y with a constant variance and mean linear in
x . But one may make those assumptions conditionally on x , without
assuming anything about the marginal distribution of x (that in the
bivariate normal model is univariate normal).
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Logistic Regression
Implied Conditional Probabilities and Optimal Classifier

Using θ as shorthand for a vector containing all the constants βk0 and the
vectors βk , the linear log probability ratio assumption (2) produces the
forms

pk (x, θ) = P [y = k |x] =
exp

(
βk0 +∑p

j=1 βkjxj
)

1+∑K−1
k=1 exp

(
βk0 +∑p

j=1 βkjxj
)

for k < K , and

pK (x, θ) = P [y = K |x] =
1

1+∑K−1
k=1 exp

(
βk0 +∑p

j=1 βkjxj
)

and an optimal (under 0-1 loss) classifier f (x) is k maximizing pk (x, θ).
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Logistic Regression
Implied Conditional Probabilities

Below is a plot of several different p = 1 forms for p1 (x , β0, β1) in a
K = 2 model. The parameter sets are

Red β0 = 0, β1 = 1
Blue β0 = −4, β1 = 2
Green β0 = −2, β1 = −2

In each case p1 (x , β0, β1) = .5 where x = −β0/β1, the function increases
in x exactly when β1 > 0, and curve steepness increases with |β1|.
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Logistic Regression
Implied Conditional Probabilities

In a K = 2 case with p = 2, (for this {1, 2} coding of y) the kind of
relationship pictured below holds. p1 (x, β0, β1, β2) defines an "s-shaped
surface" that is "steep" when coeffi cients β1, β2 have large absolute
values, is constant on lines β0 + β1x1 + β2x2 = c , and takes the value .5
on the line β0 + β1x1 + β2x2 = 0.
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Logistic Regression
Standard Model Fitting Methodology

Assumption (2) generalizes the "mixture of MVNs" assumption of LDA,
and standard methods of fitting the corresponding parameters based on
training data are necessarily fundamentally different. Using maximum
likelihood in LDA, the K probabilities πk , the K means µk , and the
covariance matrix Σ are chosen to maximize the likelihood

N

∏
i=1

πyi g
(
xi |µyi ,Σ

)
This is a mixture model and the complete likelihood is involved, i.e. a
joint density for the N pairs (xi , yi ). On the other hand, standard logistic
regression methodology maximizes

N

∏
i=1
pyi (xi , θ) (3)

over choices of θ. This is not a full likelihood, but rather one conditional
on the xi observed.
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Logistic Regression
K=2 Likelihood and Control of 0-1 Loss Error Rate

In a K = 2 case with {−1, 1} coding for y , 1/N times the negative
log-likelihood has a particularly simple form, namely

1
N

N

∑
i=1
ln

[
1+ exp

(
yi

(
β0 +

p

∑
j=1

βjxij

))]
(4)

This is an empirical version of

E ln

[
1+ exp

(
−y
(
−β0 −

p

∑
j=1

βjxj

))]

for the situation where (x, y) ∼ P. The arguments in Module 10
concerning voting functions show this is ln 2 times an upper bound on the
error rate of a classifier with voting function −β0 −∑p

j=1 βjxj . So
coeffi cient vectors giving small values of (4) (i.e. large likelihood) can be
expected to produce classifiers with small (0-1 loss) Err.
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Logistic Regression
Penalized Likelihood Fitting

Optimization of (4) ignores the potential for overfitting. Penalization (for
standardized inputs) of the logistic regression coeffi cients is a means of
investigating a natural spectrum of fitted logistic regressions. For example,
glmnet will optimize the elastic net penalized negative loglikelihood

1
N

N

∑
i=1
ln
[
1+ exp

(
yi
(

β0 + β′xi
))]

+ λ

(
α

p

∑
j=1
|βj |+

(1− α)

2

p

∑
j=1

β2j

)
(5)

(where β ∈ <p). Comparison of cross-validation classification error rates
across a grid of coeffi cient vectors (λ, α) affords appropriate choice of
complexity.
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Logistic Regression Example
Wisconsin Breast Cancer Example

The train() function in the caret package will use glmnet to search
over optimizers of the elastic net penalized form (5), reporting the
combination of penalty parameters with corresponding fit optimizing a
cross-validation error for 0-1 loss. This was done using 100 repeats of
10-fold cross-validation. The resulting cross-validation error was 3.07%,
somewhat better than what was obtained using p = 9 LDA.

The (glmnet form) parameters identified by cross-validation were roughly
α = .005 and λ = .017 and provide some shrinkage of coeffi cients (and
thus flattening of the predicted probability surface) over what is produced
by ordinary (unpenalized likelihood) logistic regression fitting.
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Logistic Regression
Basis Functions and Transforms

Good logistic regression models are the basis of good classifiers when one
classifies according to the largest predicted probability. And just as the
usefulness of LDA can be extended by consideration of transforms/features
made from an original p-dimensional x, the same is true for logistic
regression. For example, beginning with x1 and x2 and creating additional
predictors x21 , x

2
2 , and x1x2, one can use logistic regression technology

based on the 5-dimensional input
(
x1, x2, x21 , x

2
2 , x1x2

)
to create

classification boundaries that are quadratic in terms of the original x1 and
x2. An example of the kind of functional form for the conditional
probability that y = k given a bivariate input x that can result is on the
next slide.
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Logistic Regression
Hypothetical Logistic Regression Probability that y=1

The plot below results when one uses the quadratic form −.2x21 − .3x22 to
make logistic probabilities that y = 1 (for 1-2 coding). Constant-
probability contours of such a surface are ellipses in (x1, x2)-space.
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Other Linear Classifiers
Methods Not Derived from A Statistical Model

LDA and logistic regression provide classical statistical models as
motivation for linear classifiers. There is another line of argument/
development that begins elsewhere, namely with a non-probabilistic
classical optimization objective.

In the end, regardless of origins, all prediction and classification
methodologies are subject to the hard scrutiny of how well they do at
prediction/classification. So we next discuss this alternative line of
development and what it offers in the way of new insights to and sound
methods for classification.
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Support Vector Classifiers
Goal in Vague Terms

Consider a 2-class classification problem. For notational convenience,
we’ll suppose that output y takes values in {−1, 1}. For
β = (β1, β2, . . . , βp) ∈ <p and β0 ∈ < again consider the form

v (x) = β0 +
p

∑
j=1

βjxj = β0 + x′β (1)

and a classifier

f (x) = sign (v (x)) =
{
−1 if v (x) < 0
1 if v (x) > 0

(2)

We consider the problem of choosing β and β0 to provide a "maximal
cushion" around a hyperplane approximately separating between
training inputs xi with yi = −1 and those xi with yi = 1.
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Support Vector Classifiers
Geometry of "Cushions Around Hyperplanes" in p-Space

A useful way to think about a (p − 1)-dimensional hyperplane in <p is as
the set of all x ∈ <p that for a particular unit vector u ∈ <p and constant
c satisfy

p

∑
j=1
ujxj = c

Then for M > 0 the set of x ∈ <p with

c −M ≤
p

∑
j=1
ujxj ≤ c +M

is a slab or cushion of thickness 2M around the hyperplane. Typically
there is no such slab that separates the yi = −1 input vectors xi from the
yi = 1 input vectors xi and one must settle for somewhat less than
identification of a separating slab.
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Support Vector Classifiers
Slack Variables

For some set of values ξi ≥ 0 called "slack" variables (that provide
"wiggle room" in search for a "thick" slab that "nearly separates" inputs
for two classes) controlled for "budget" C > 0 by the constraint that

N

∑
i=1

ξi ≤ C

we consider (for unit vector u ∈ <p and constant β0) the set of conditions

yi

(
β0 +

p

∑
j=1
ujxij

)
≥ M (1− ξi ) ∀i (3)

For yi = −1 this is ∑p
j=1 ujxij ≤ −β0 −M (1− ξi ) and for yi = 1 it is

∑p
j=1 ujxij ≥ −β0 +M (1− ξi ).
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Support Vector Classifiers
Interpretation of Slack Variables

If a slab of thickness 2M around the hyperplane defined by
∑p
j=1 ujxij = −β0 separates the 2 classes, the conditions (3) are met with

all ξi = 0. Requiring only that they all be met with some ξi > 0 is a
relaxation of expectations. Here ξi is a fraction of the margin M that
input xi is allowed to be on the "wrong side" of its cushion around the
hyperplane defined by ∑p

j=1 ujxj = −β0.

The sign/direction on u is chosen to give the points with yi = 1 larger
∑p
j=i xijuj than the ones with yi = −1.
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Support Vector Classifiers
p=2 Graphical Representation of the Notation

Below is a toy p = 2 example illustrating the notation used regarding slack
variables and a slabs meant to separate yi = −1 (red) and yi = 1 (blue)
cases.
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Support Vector Classifiers
Optimization Problem

The optimization problem corresponding to a support vector classifier

(with v (x) = β0 +
p

∑
j=1
ujxj ) is to

maximize
u with ‖u‖ = 1
and β0 ∈ <

M subject to

{
yi
(

β0 +∑p
j=1 ujxij

)
≥ M (1− ξi ) ∀i

for some ξi ≥ 0 with ∑N
i=1 ξi ≤ C

This constrained (by the budget C > 0) problem is equivalent for some
C ∗ > 0 to the problem

minimize
β ∈ <p

and β0 ∈ <

1
2
‖β‖2+C ∗

N

∑
i=1

ξi subject to

{
yi
(

β0 +∑p
j=1 βjxij

)
+ ξi ≥ 1

∀i for some ξi ≥ 0

(and use of v (x) = β0 +
p

∑
j=1

βjxj ).
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Support Vector Classifiers
Second Version of the Optimization Problem

The second version of the problem replaces the budget constraint on
∑N
i=1 ξi with a penalty on this sum, in much the same way that elastic net

fitting can be described in terms of either a constrained optimization
problem or a related unconstrained problem. This second formulation is
that of a convex (quadratic criterion, linear inequality constraints)
optimization problem for which there exists standard theory and
algorithms.

Large C ∗ corresponds directly to a small budget constraint C in the first
formulation. C ∗ (C ) functions as a complexity parameter that can be
chosen on the basis of cross-validation. Small C ∗ (large C ) corresponds
to a "low complexity" classifier and there are many support vectors
contributing to the ultimate form of the classifier. The exact form of the
classifier is less sensitive to a few key data cases when C ∗ is small than
when C ∗ is large.
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Support Vector Classifiers
Properties of the Optimal Solution

The optimizing vector β producing the optimal classifier has ‖β‖ = M−1
and can be written as ∑N

i=1 αiyixi for some αi ≥ 0. In fact αi > 0 only for

those (typically few) training cases for which yi
(

β0 +∑p
j=1 βjxij

)
≤ 1.

Geometrically these are the input vectors xi that are "exactly on" (in the
case of equality) or "on the wrong side of" the surface of the "cushion of
thickness 2M" that surrounds the hyperplane defining the decision
boundary. They are called the support vectors of the classifier. The
support vectors xi with yi

(
β0 +∑p

j=1 βjxij
)
= 1 have corresponding

ξi = 0, while the others have ξi > 0. As C ∗ increases (C decreases)
fewer and fewer support vectors are allowed.
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Support Vector Classifiers
Two Toy Examples

Below are illustrations of two different support vector classifiers for a small
p = 2 problem.
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Support Vector Classifiers
Wisconsin Breast Cancer Example

The train() function in the caret package can be used to make a good
cross-validation-based choice of C ∗ (in terms of 0-1 loss error rate) for the
Wisconsin breast cancer example. 100 repetitions of 10-fold
cross-validation produced a best average cross-validation error rate of
2.93% for the choice C ∗ = .01.

Subsequently using the ksvm() function in the kernlab package to fit a
support vector classifier based on this cost value, a training error rate of
2.93% was also obtained. 11 out of 444 (2.48%) of benign training cases
and 9 of 239 (3.77%) of malignant training cases are misclassified by the
resulting support vector classifier. The classifier is potentially described as
having low complexity, in that the small value of C ∗ produces a classifier
that has 106 support vectors.
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Creation and Use of Functions of a p-Dimensional Input
Extending Linear Methods

We’ve already mentioned (in the contexts of LDA and logistic
regression-based classifiers) the possibility of building from an input vector
x ∈ <p other predictors h1 (x) , h2 (x) , . . . , hM (x) (some of which could
be coordinates of x) and doing classification based on the M-dimensional
feature vector (h1 (x) , h2 (x) , . . . , hM (x)). (Again, a version of "linear"
classification with quadratic decision boundaries in <p can be obtained in
this way.)

Of course, the same observation can be made about support vector
classifiers. They can be directly used with features engineered from
x ∈ <p . While this is possible, another more implicit route to the use of
transformations/features is far more common with support vector
classifiers. This is the use of "kernels" and the resulting "support vector
machines."
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Support Vector Classifiers and Kernels-SVMs
Kernel Functions

A key idea of modern machine learning is the use of "kernel" functions to
create new non-linear methods from more standard linear ones. A kernel
function (in this sense of the word "kernel" — the word is used a variety of
ways in this field) is a symmetric function K (x, z) that maps pairs of
inputs to real numbers in such a way that for any set of N inputs xi the
N ×N matrix with i , i ′ entry K (xi , xi ′), say K, is "non-negative definite,"
meaning that for any N vector of values αi ,

∑
i ,i ′

αiαi ′K (xi , xi ′) ≥ 0

(in vector notation, this is α′Kα ≥ 0).

Roughly, one then uses N-vectors of "features" defined by the kernel and
training set

(K (·, x1) ,K (·, x2) , . . . ,K (·, xN )) (1)

to build a classifier (or other statistical learning method).
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Support Vector Classifiers and Kernels-SVMs
Kernels

Not every function K with K (x, z) = K (z, x) is a kernel function. But
there are many useful ones, among them the ordinary inner product in <p
(the "linear kernel") and the so-called "Gaussian" kernel,

Kl (x, z) =
p

∑
j=1
xjzj and

KG (x, z) = exp
(
−γ ‖x− z‖2

)
= exp

(
−γ

p

∑
j=1
(xj − zj )2

)

respectively. When a linear kernel is used, the corresponding
machine learning method is exactly the "ordinary" method based on
linear combinations of coordinates of x. And when a Gaussian
kernel is used, a method based on linear combinations of "radial
basis functions" located at training cases, functions
exp

(
−γ ‖x− xi‖2

)
, is produced.
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Support Vector Classifiers and Kernels-SVMs
Inner Products Between "Kernel Features"

There is a theoretical basis to replace <N inner products of
newly-produced "kernel features" with values of the kernel. That is,
instead of using the <N inner product

N

∑
i=1
K (x, xi )K (z, xi )

for feature vectors (1) corresponding to inputs x and z, "abstract inner
products"

K (x, z)

for these can be used in the development of classifiers (or other statistical
learning methods). This is sometimes called "the kernel trick." Its real
basis is theory that says there is an abstract (function) space with
elements that are linear combinations of functions K (·, x) mapped to from
the original feature space <p by x→ K (·, x) in which x and z are
mapped to elements with inner product K (x, z).
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Support Vector Machines (SVMs)
Application of Kernels to Support Vector Classification

Solving the support vector optimization problem for N-dimensional
features (1) computing inner products using values of the kernel (or
solving the support vector optimization problem in the abstract function
space and translating the solution back to the original feature space <p)
produces "support vector machines."

Just as other linear classification methods applied directly to non-linear
functions of x produce non-linear decision boundaries in <p , use of any
but the linear kernel Kl (x, z) produces non-linear decision boundaries (and
contours in <p corresponding to the points in <N or the abstract space a
"distance" in those spaces of "M" from the decision boundary in them).
The numerical optimization required is exactly the same as that required
to produce a support vector classifier ... so computationally, there is
nothing any more diffi cult here than is already faced in making support
vector classifiers.
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Support Vector Machines (SVMs)
Form of an SVM

When x ∈ <p a support vector classifier is for optimally chosen β0 ∈ <
and β ∈ <p an optimal linear combination of some of the training feature
vectors xi (the support vectors) is

sign

(
β0 +

p

∑
j=1

βjxj

)
The form of a support vector machine is analogous. For x ∈ <p and
kernel function K (x, z), the analogue of β ∈ <p is an optimally chosen
linear combination of some of the training case kernel features (1) (the
"support vectors" for the SVM). The analogue of ∑p

j=1 βjxj is the
(abstract) inner product of that linear combination with the kernel feature
vector for x. This is the same linear combination of the of the values
K (x, xi ). So for an optimally chosen β0 ∈ < and β ∈ <N , an SVM is

sign

(
β0 +

N

∑
i=1

βiK (x, xi )

)
(2)
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Support Vector Machines (SVMs)
Form of an SVM

The form (2) is interesting. When the kernel is the Gaussian kernel,
"voting" function v (x) = β0 +∑N

i=1 βiK (x, xi ) is an element of a "radial
basis function network" (is a linear combination of radial basis functions).
The decision boundary in x ∈ <p is the "0-level contour" of this function.
"Support vectors" in this context are training cases that have non-zero αi
in the optimal form of the voting function. In general, large C ∗ produces
(large penalty for slack variables in the abstract space and therefore
relatively) small numbers of support vectors.

In this context, both the cost parameter C ∗ and the kernel parameter γ are
complexity parameters whose values can be chosen via cross-validation.
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Support Vector Machines (SVMs)
Some SVMs for a Toy p=1 Example

Below is a plot of a simple N = 20 point p = 1 training set with 10 cases
with y = −1 and 10 with y = 1.

We fit several SVM classifiers to this data set using Gaussian kernels with
parameter γ. "Voting functions" β0 +∑N

i=1 βiK (x, xi ) to be compared to
0 to produce classifications are thus "a constant plus a linear combination
of normal pdfs with standard deviation 1/

√
2γ". The next slide shows

voting functions for 4 combinations of γ and the cost parameter C ∗.
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Support Vector Machines (SVMs)
SVM Voting Functions for a Toy p=1 Example

Figure: Red and blue ticks indicate locations of class −1 and 1 training cases.
Ticks below the axes indicate locations of "support vector" cases.
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Support Vector Machines (SVMs)
Observations Motivated by the Plots

The plots on the previous panel suggest that

1. large γ enables "wiggly" voting functions (and the ability to match
them to irregular patterns in training cases),

2. overall "amplitude" of the voting function increases with C ∗, and

3. increased C ∗ reduces the number of support vectors.

The next slide presents 4 contour plots of Gaussian kernel SVM voting
functions for the p = 2 example used to illustrate (linear kernel) SV
classifiers (laid out in the same pattern for relative sizes of γ and C ∗ just
used in the p = 1 example). Qualitative similarities to the p = 1 example
are clear.
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Support Vector Machines (SVMs)
A Toy p=2 Example
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Support Vector Machines (SVMs)
Wisconsin Breast Cancer Example

It should be clear from even the toy examples that there is a huge variety
of possibilities of fitted classifier that result from the choice of γ and C ∗

without even opening the possibility of other kernel forms. Choice of
parameters for a real SVM is clearly a job for very careful cross-validation.

The train() function in the caret package can be used to make a good
cross-validation-based choice of C ∗ and γ for an SVM with Gaussian
kernel for the Wisconsin Breast Cancer data. 100 repetitions of 10-fold
cross-validation produced a best average cross-validation error rate of
2.92% for the choice C ∗ = 1.2 with γ = .05. Subsequently using the
ksvm() function in the kernlab package to fit a support vector classifier
based on these values, a training error rate of .3% was obtained. 1 out of
444 benign training cases and 1 of 239 malignant training cases are
misclassified by the resulting support vector machine that has 282 support
vectors.
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SVMs and Optimal Voting Functions
Perspective

SVM voting functions v (x) = β0 +∑N
i=1 βiK (xi , x) optimize over choices

of β0, β1, . . . , βN an empirical version of (expected "hinge function-loss")

E [1− y · v (x)]+ (3)

plus 1/C ∗ times a penalty1 on the "size" of the function ∑N
i=1 βiK (xi , x).

As indicated in Module 10, 0-1 loss error rate for f (x) =sign(v (x)) is
bounded above by the expected hinge function-loss (3), and a g
optimizing the expected hinge function-loss is

gopt (x) = sign
(
P [y = 1|x]− 1

2

)
This is the optimal 0-1 loss classifier. So SVM technology produces an
approximation of the optimal 0-1 loss classifier based on penalized
linear combinations of kernel slices.

1The penalty is the quadratic β′Kβ in β = (β1, . . . , βN )
′.
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Classification/Decision Trees
K-Class Problem

The classification version of CART is similar to the SEL/regression
version. An empirical loss to associate with a given tree (parallel to SSE
used in regression contexts) is needed. Note that in a K -class problem
(where y takes values in {1, 2, . . . ,K}) corresponding to a particular
rectangle Rm is the fraction of training vectors with classification k,

p̂mk =
1

# training input vectors in Rm
∑

i with xi in Rm

I [yi = k ]

and a natural classifier based on l rectangles is f̂l (x) taking a value k
maximizing p̂mk for the m such that x ∈ Rm . That is, f̂l (x) is a class
most heavily represented in the rectangle to which x belongs. The
empirical misclassification rate (0-1 loss training error) for this predictor is

err =
1
N

N

∑
i=1
I
[
yi 6= f̂l (xi )

]
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Classification/Decision Trees
Splitting Criteria

err is the most obvious splitting criterion for tree building (with splits
chosen to provide maximum reduction in err available given a current set
of rectangles). But other measures of overall node/rectangle purity (not
directly tied to classification error rate) are also popular.

One such criterion is "the Gini index"

1
N

l

∑
m=1

Nm

(
K

∑
k=1

p̂mk (1− p̂mk )
)

where Nm = the number of training input vectors in Rm . In the K = 2
case, this is equivalent to SSE computed treating class labels as numerical
values.
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Classification/Decision Trees
Splitting Criteria and Choice of Tree

Another measure of overall node/rectangle purity is the "cross entropy"

− 1
N

l

∑
m=1

Nm

(
K

∑
k=1

p̂mk ln (p̂mk )

)

(The entropy of distribution p1, . . . , pK on K values is −∑K
k=1 pk ln (pk ),

a number between 0 and lnK , the former corresponding to the case where
one pk = 1 and the latter to the case where all pk = 1/K .)

Upon adopting one of these criteria and using it to replace SSE in the
regression tree discussion, one has a classification tree methodology. HTF
suggest using the Gini index or cross entropy for tree growing and any of
the indices (but most typically the empirical misclassification rate) for tree
pruning according to cost-complexity.
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Example
Wisconsin Breast Cancer Example

The caret function train() provides cross-validation choice of the
rpart parameter cp multiplying tree size in cost-complexity pruning of a
decision tree for the Wisconsin Breast Cancer example. 10-fold cross-
validation repeated 100 times yields a minimum 4.86% cross-validation
error rate for the choice of cp = .0014.

This value of cp applied to making a decision tree based on the entire
training set produces the very simple tree with 7 final leaves portrayed on
the graphic on the next slide. The benign cases are coded "2" and the
malignant ones are coded "4" on that graphic. It is clear from the graphic
that 13 of 444 (2.93%) of benign and 9 of 239 (3.77%) of malignant
training cases are misclassified by the decision tree, for an overall training
error rate of 3.22%.
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Example
Decision/Classification Tree for the Wisconsin Study

Stephen Vardeman (Analytics Iowa LLC) Statistical Machine Learning-15 Janaury 2018 6 / 11



Random Forests for Classification
Decision/Classification Trees from Bootstrap Samples

As in the regression case, suppose that one makes B bootstrap samples of
size N from the training set T, say T∗1,T

∗
2, . . . ,T∗B . For each sample, T

∗
b ,

a corresponding classification tree is developed by

1. at each node, randomly selecting m of the p input variables and
finding an optimal single split of the corresponding rectangle over the
selected input variables (that most reduces the splitting criterion),
splitting the rectangle, and

2. repeating 1 at each node up to a fixed depth or until no single-split
improvement in splitting criterion is possible without creating a
rectangle with less than a small number of training cases, nmin.

Let f̂ ∗b (x) be the corresponding tree-based classifier taking values in
{1, 2, . . . ,K}, a class most heavily represented in the final rectangle to
which x belongs.
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Random Forests for Classification
A Random Forest Classifier

A random forest classifier is then f̂ ∗B (x) a class k maximizing

B

∑
b=1

I
[
f̂ ∗b (x) = k

]
the number of bootstrap trees classifying to k.

Standard default values of tuning/complexity parameters for random
forest classifiers are m =

⌊√
p
⌋
and nmin = 1.1 More principled choice of

these parameters is possible via cross-validation.

1The default nmin = 1 means that splitting terminates only because of reaching a
maximum depth or the impossibility of reducing the splitting criterion with a single
additional split. Unless the maximum tree depth is small, this default can easily lead to
0 training error rates that are not good indicators of Err. For that purpose the OOB
error must be trusted.
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Random Forests for Classification
Out of Bag Samples

As for SEL random forests, for each b call the set of OOB indices
I (b) ⊂ {1, 2, . . . ,N}. (I (b) is the set of indices for which the
corresponding training vector does not get included in the bootstrap
training set T∗b .) Then let ŷ ∗iB be a k maximizing

∑
b≤B such that i∈I (b)

I
[
f̂ ∗b (xi ) = k

]
the number of bootstrap classification trees not built using case i that
classify case i to class k. The out of bag error is then

OOB
(
f̂ ∗B
)
=
1
N

N

∑
i=1
I [yi 6= ŷ ∗iB ]

in 0-1 loss classification contexts. Large B values of this serve as natural
approximations of 0-1 loss Err for a random forest classifier.
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Example
Wisconsin Breast Cancer Example

The randomForest() function in the package by the same name can be
used to search (on the basis of OOB error) over values of the parameter
mtry (that specifies how many randomly chosen coordinates of the input
vector are eligible for splitting at each stage of tree building). With the
default value of nmin = 1, the choice mtry = 2 produces minimum OOB
misclassification error rate of 2.49%. That random forest classifier
misclassifies 12 of 444 (2.70%) of benign and 6 of 239 (2.51%) of
malignant training cases, for an overall training error rate of 2.64%.
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Estimation of Class Probabilities
Use of Random Forests

There are contexts where a classification model is appropriate, but what is
needed is not a classifier, but rather class probabilities conditioned on the
input vector x. One such case is where an AUC criterion is to be applied
to judge 2-class prediction effi cacy and an ordering of training cases is
needed. Another is where an ensemble of methods is to be used to make
a meta-classifier/super learner.

In these circumstances, a perfectly sensible procedure is to apply a
SEL/regression random forest to 0-1 responses, ỹ = I [y = k ], for each
class k of interest. Another possibility is to build bootstrap trees (probably
using a Gini index or cross entropy splitting criterion) then making vectors(

f̂ ∗b1 (x) , f̂ ∗b2 (x) , . . . , f̂ ∗bK (x)
)

that give relative frequencies of the bootstrap sample cases in the same
rectangle as x,. These can be averaged across B bootstrap samples to
produce predictors for the vector of K values P [y = k |x].
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Boosting and Classification
Generalities, AdaBoost.M1, and Current Possibilities

SEL boosting amounts to successively correcting predictors for a
quantitative response y (that are each empirical approximations to a
conditional mean function, E[y |x]) by repeatedly modeling and partially
correcting for residuals from the current version of the predictor.

A natural question is "How might one apply the boosting idea to
classification?" The so-called "AdaBoost.M1 algorithm" is one specific
answer to that question, that actually predates the Friedman gradient
boosting ideas.

In this module we begin by making some general comments about boosting
and classification. Then we consider AdaBoost.M1. Finally, we end with
some discussion of what is currently practically possible in this realm.
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Boosting and Classification
Boosting and Voting Function Optimization

In light of our view of boosting in SEL prediction and consideration of
(likelihood ratios and) voting functions as basic to classification problems,
a natural path to application of boosting in classification is through
production of a voting function by successive approximation to an
optimizer of (an empirical version of) an expected function-loss by
linear combination of elements of some class of simple functions of
an input x ∈ <p .

We first considered function-losses h (u) for 2-class classification voting
functions v (x) in Module 10. We’ve since seen the usefulness of
h (u) = ln (1+ exp (−u)) / ln (2) and coordinate functions of x in logistic
regression-based classification and the relevance of the hinge loss
h (u) = (1− u)+ (and kernel-slice functions) to support vector machines.
This module further advances this story line.
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Boosting and Classification
Boosting and Voting Function Optimization

In principle, any convenient function-loss h (u) could be paired with any
convenient class of functions of x ∈ <p to motivate the development of a
classification methodology. What is needed for effective application is
good fitting methodology (penalized or not, one-shot or iterative) to
produce (?approximate?) optimizers of the empirical mean function-loss.
(In a penalized context, a spectrum of approximate optimizers can be
produced.)

Although the original motivation of AdaBoost.M1 was not this, it can be
seen as the pairing of exponential function-loss h (u) = exp (−u) with
the class of "stumps"/single-split trees. It is an iterative/successive
approximation algorithm for unpenalized optimization of empirical
average function-loss.

Stephen Vardeman (Analytics Iowa LLC) Statistical Machine Learning-16 January 2018 4 / 14



The AdaBoost.M1 Algorithm
Expected Exponential Loss and AdaBoost

Consider again the {−1, 1} coding of K = 2 class labels in a 0-1 loss
classification problem (y takes values in {−1, 1}). A voting function for
classification that optimizes

E exp (−y · v (x))

not only guarantees a upper bound on 0-1 loss error rate, but is in fact an
minimizer of that error rate. The AdaBoost.M1 algorithm aims to
optimize an empirical approximation of this, namely

1
N

N

∑
i=1
exp

(
−yi f̂ (xi )

)
by successive correction of linear combinations of the simplest possible tree
classifiers—ones each splitting the x space on only one coordinate xj—taking
values ±1.
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The AdaBoost.M1 Algorithm
Perspective on AdaBoost

The AdaBoost.M1 algorithm makes exactly optimal updates (no gradient
search for approximately optimal updates is needed) of successive
approximations to an optimizer of empirical average function-loss. The
class of linear combinations of "stumps" taking values −1 and 1 is large
enough that the algorithm eventually produces an iterate with associated
classifier that has the smallest training error rate possible. Except in
situations where some training cases have xi = xi ′ but yi 6= yi ′ this best
possible training error rate is 0.

As there is no formal penalization in the AdaBoost.M1 algorithm, the
number of iterations that it is allowed to proceed is often treated as a
complexity parameter and subjected to optimization based on
cross-validation in order to address the issue of overfit.
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The AdaBoost.M1 Algorithm
Algorithm Details

The AdaBoost.M1 algorithm is built on some base classifier form f
(typically "stumps"—the simplest possible tree classifier, possessing just 2
final nodes). It proceeds as follows.

1. Initialize weights on the training data (xi , yi ) at

wi1 ≡
1
N

for i = 1, 2, . . . ,N

2. Fit a classifier f̂1 to the training data to optimize

N

∑
i=1
I
[
yi 6= f̂ (xi )

]
let

err1 =
1
N

N

∑
i=1
I
[
yi 6= f̂1 (xi )

]
and α1 = ln

(
1− err1
err1

)
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The AdaBoost.M1 Algorithm
Algorithm Details

3. Set new weights on the training data

wi2 =
1
N
exp

(
α1I

[
yi 6= f̂1 (xi )

])
for i = 1, 2, . . . ,N

(This up-weights misclassified cases by a factor of (1− err1) /err1).)
4. For m = 2, 3, . . . ,M

a. Fit a classifier f̂m to the training data to optimize

N

∑
i=1

wim I
[
yi 6= f̂ (xi )

]
b. Let

errm =
∑Ni=1 wim I

[
yi 6= f̂m (xi )

]
∑Ni=1 wim

and αm = ln
(
1− errm
errm

)
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The AdaBoost.M1 Algorithm
Algorithm Details

c. Update weights as

wi (m+1) = wim exp
(
αm I

[
yi 6= f̂m (xi )

])
for i = 1, 2, . . . ,N

5. Output a resulting voting function

vM (x) =
M

∑
m=1

αm f̂m (x)

(Classifiers with small errm get big positive weights.)

Stephen Vardeman (Analytics Iowa LLC) Statistical Machine Learning-16 January 2018 9 / 14



The AdaBoost.M1 Algorithm
Toy Example

Below is a graphic of the small (N = 16) fake p = 2 data set that has
been used to illustrate the development of various classifiers, with (single
line) boundaries of M = 7 successive "stumps" used to develop an
AdaBoost classifier with 0 training error rate. (Arrows point in the
direction of y = +1 decisions.)
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The AdaBoost.M1 Algorithm
The Toy Example Continued

The first cut leaves 2 (red) cases with y = 1 on the wrong side of an
M = 1 decision boundary. The first classifier thus has error rate
err1 = 2/16 and α1 = ln ((7/8) / (1/8)) = ln (7). The two points on
the wrong side of the decision boundary are up-weighted by a factor of 7
in seeking the next stump. One operates as if there are 14+ 7+ 7 = 28
cases (7 at each of the xi that are misclassified at the first cut) in
choosing it. This leads to the #2 (horizontal line) decision boundary.
And so on. At every iteration m, cases misclassified by the new stump are
up-weighted (producing a new total weight). Ultimately, (−1/1 valued)
stump classifiers f̂m are combined via

M

∑
m=1

αm f̂m (x)

to make the AdaBoost.M1 voting function. For instance, the first two
terms of this voting function are ln (7)sign(x1 − 2.95) and
ln (6)sign(x2 − 1.85).
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The AdaBoost.M1 Algorithm
The Toy Example Continued

Below are graphics portraying the 5 different classifiers met in the
development of the 0 training error rate M = 7 AdaBoostM.1 classifier.
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AdaBoost
Wisconsin Breast Cancer Example

The tune() function in the caret package enables cross-validation for
both the adaboost() routine in the FastAdaboost package and the
adaboost.M1() routine in the adabag package. AdaBoost is extremely
computationally intensive. The former implementation (in C++
underneath an R interface) purports to be about 50 times as fast as the
second. It seems that this is necessary for a problem of any size (despite
the fact that the adabag package provides more options than the
FastAdaboost implementation—including trees deeper than a single split)
if any serious cross-validation is to be employed to tune the algorithm or
simply predict its performance with a fixed set of parameters.

We tuned the adaboost() routine using 10 repeats of 10-fold cross-
validation on the number of "iterations," i.e. on the parameter M.
M = 40 stumps gave an average cross-validation error rate of 2.72%.
AdaBoost.M1 run with M = 40 on the full training set has a 0 training
error rate.
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Boosting in Current Practice
Perspective

The currently wildly popular XGBoost algorithm implements gradient
boosting with general binary trees as base classifiers (not just
"stumps"). It allows not only "standard" choices of empirical losses (in
a way that includes both regression-type prediction and classification) but
user-supplied ones as well. It also provides the additional feature of
employing a form of penalization to control the complexity of (tree)
corrections added into the evolving form of a function being constructed.
XGBoost is widely used in predictive analytics competitions. It is
implemented in a computationally very effective manner, making
cross-validation tuning workable (even without the necessity of access to
a super-computer!)
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Combinations of "Ensembles" of Classifiers
Classifier "Fusion"

Often a person or team will create several classifiers, no one of which is
completely satisfactory. A reasonable question is then "Is there any
rational way to ’stack’or combine the ensemble of classifiers?" There are
simple (linear combination) ways of combining SEL predictors that are
reasonably defensible, but exactly what to do with multiple classifiers is far
more confused. While there is a fairly large literature on "classifier
fusion," it is not cogent and in fact is rife with errors (of
perspective and motivation if not technical detail). We here make
some simple points about the problem and some general recommendations
about what can be done.
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Classifiers as "Features"
Likelihood Ratios for Classifier Outcomes as Data

In one sense, a classifier or (in the case that there is one, its underlying
"voting function") is just one highly data-dependent "feature" computed
from training data. If one ignores the data-dependent nature of these
features (as is common in the "classifier fusion" literature) how best to
combine them is completely obvious (and ignored in the literature!).
For p classifiers with vector of outcomes (be they classifications or
values of voting functions) x ∈ <p , in a K = 2 class problem with
class-conditional densities (for the vector of outcomes) g0 and g1 and
π0 = P [y = 0] and π1 = P [y = 1] an optimal classifier is

f (x) = I
[
g1 (x)
g0 (x)

>
π0
π1

]
One simply makes likelihood ratios based on the classifier outcome "data"
x and classifies accordingly!
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Optimal "Fusion" of Fixed Classifiers
A Toy Example

Consider the "fusion" of two classifiers, f1 and f2. Suppose that
class-conditional joint probabilities for values of (f1, f2) are as below:

y = 0 y = 1
f2 = 0 f2 = 1 f2 = 0 f2 = 1

f1 = 1 .45 .05 f1 = 1 .05 .05
f1 = 0 .45 .05 f1 = 0 .45 .45

Taking ratios of cell probabilities, the likelihood ratio g1 (f1, f2) /g0 (f1, f2)
based on these classifiers is as below:

f2 = 0 f2 = 1
f1 = 1 1/9 1
f1 = 0 1 9
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Theoretically Optimal "Fusion" of Fixed Classifiers
Toy Example Continued

Then supposing that π0 = .6 and π1 = .4, an optimal classifier to be
made from the pair (f1, f2) is

I [(f1, f2) = (0, 1)]

It is widely and wrongly assumed that a sensible method of combining
multiple classifiers is always to "take a majority vote." This (admittedly
artificial but instructive) example shows that heuristic can be seriously
flawed (as it would demand deciding for class 1 when (f1, f2) = (1, 1) if it
decides for class 1 when (f1, f2) = (0, 1)). What matters is not numbers
out of p classifiers "voting" for a class, but rather how joint probabilities
for an observed vector of classification outcomes compares class to class.
In a K -class problem with p classifiers producing outcome vector x ∈ <p ,
one wants to classify to class k maximizing

πkgk (x)

across k = 1, 2, . . . .K . This need not have any simpler description.
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"Linear Combination Stacking" versus
"Meta-Classifiers"/"Super-Learners"
Common Heuristics versus Super-Learners

Majority voting is the simplest version of the common heuristic of making
some set of weights w1,w2, . . . ,wp for 0-1 outcomes from p classifiers and
using w -weighted voting to determine an ensemble classification. But
none of this naive kind of "linear combination stacking" has any
real basis or motivation in theory.

What is far more defensible is to treat empirically-derived voting
functions (or monotone transforms of them like estimates of
P [y = 1|x] or approximate likelihood ratios) as features or inputs
(possibly alongside some or all original inputs xj ) into some single
tree-based classification method. We say tree-based because of the
invariance of such methods to scales of their inputs, obviating any need to
somehow put all constituent voting functions on the same scale before
applying a classification technology.
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Super-Learners/Use of (a Final) Classifier Methodology
Voting Functions as Features

If a 2-class classification method is any good, it ultimately creates a
partition of <p approximating the optimal one derived from the likelihood
ratio. That means that any good voting function (or equivalent function)
defining a classifier in an ensemble is approximately equivalent to the
likelihood ratio. Using such as features in a tree-based classification
method is then simply a sensible way of hopefully building a better
approximate likelihood ratio from the members of the ensemble.

The obvious candidates for a final/"meta-classification" method are
classification trees, random forests, and tree-based versions of boosting.
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Super-Learners/Use of (a Final) Classifier Methodology
Honest Cross-Validation

The practical diffi culties faced in principled application of the super-
learner/meta-classifier paradigm are exactly those discussed in Module 9
concerning stacking/super-learner technology in SEL prediction. Honest
cross-validation is the only means available for judging the likely
effectiveness of a set of parameters for constituent classifiers and a final
classifier. All of the discussion there about cross-validation in the context
of SEL prediction super-learners is equally applicable here in the
classification context.
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Unsupervised Statistical Machine Learning
Interpretable Patterns Without the Goal of Prediction

All of statistical machine learning is about quantifying interpretable
patterns in large numbers of variables and/or cases. We’ve looked
extensively at "supervised learning" (prediction and classification). Now
we consider some basic methods of "unsupervised learning" where there
is no single target, y , in sight and the object is to make general statements
about how variables or cases in an N × p training set are related.

We first look at "principal components" methods. These provide a
"change of coordinate system" from the original p variables xj , in which
large (or small) variation in a particular new coordinate can be identified,
potentially interpreted, and possibly provide a low-dimensional
representation of high-dimensional (large p) data.
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Matrices of Centered (and Possibly Scaled) Columns
Relationships Among Variables

We assume that variables in an N × p training set have been centered, and
possibly standardized by division by column standard deviations, sj . This
means that the "gross features" of overall averages—and possibly
unit-dependent scale—are understood and have been removed from
consideration. What remains is to understand how the set of variables are
related.

This basic idea is pictured on the next slide. The N = 11 original (red)
p = 2 data points have been standardized to produce the (blue) points.
The original means of x̄1 = 10 and x̄2 = 15 and standard deviations
s1 = 2.61 and s2 = 5.22 give way to 0 means and standard deviations of 1
for the standardized variables. But the correlation of r = −.65 is
unchanged as one quantification of the basic relationship between the
variables that remains.
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Matrices of Centered (and Possibly Scaled) Columns
Relationships Among Variables
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Matrices of Centered Columns
Application of the SVD (or Eigen Decompositions)

Applying the "singular value decomposition" of the N × p training data
matrix X or the related "spectral/eigen decompositions" of matrices of
inner products of rows or of columns of X (the latter giving a multiple of
the sample covariance matrix for X) identifies a new (rotated) coordinate
system for p-dimensional space that aligns with the dataset in a way that
identifies directions of important variation or lack thereof in the cases.

That is, appropriate linear algebra (theory and computational routines)
produces a set of perpendicular unit1 vectors v1, v2, . . . , vp that define a
new coordinate system in <p aligned with directions of "largest through
smallest variation" in the the training set. These are called "principal
component directions."

1The sum of the squared entries of any vj is 1, making it interpretable as pointing
from the origin of <p to a point on the unit sphere in <p .
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Matrices of Centered Columns
Application of the SVD

To be more precise, the singular value decomposition provides a unit
vector v1 such that (for a matrix of centered columns) the sum of squared
inner products with data cases, namely

N

∑
i=1

(
p

∑
j=1
v1jxij

)2
is maximal. This is N (or N − 1) times the sample variance of the values
∑p
j=1 v1jxij . These inner products are "1st coordinates" of case i data

vectors in a new coordinate system defined by the principal component
directions. v1 points in a direction of maximal-data-case-variation in
terms of a new "v1 coordinate."

Subject to being perpendicular to (having 0 inner product with) v1, v2
points in an <p direction with maximal sample variance of the values
∑p
j=1 v2jxij , the "2nd coordinates" of case i data vectors in a new

coordinate system." And so on.
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More Matrices of Centered Columns
Terminology

The inner products
p

∑
j=1
vljxij = 〈vl , xi 〉

that are (the lth) coordinates of case i in the new coordinate system are
called the principal component scores of the xi , and an N-vector
consisting of the 〈xi , vl 〉 (the new lth coordinates of the cases), is the
value of the lth principal component.

The entries of the p × 1 vector vl are sometimes called the component
weights or loadings for the lth component. A 0 loading means that the
lth coordinate of xi is ignored in the creation of its lth principal
component score (the lth column of the data matrix does not participate
in the creation of the lth principal component vector as a linear
combination of columns of the data matrix X).
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More Matrices of Centered Columns
Terminology Summary

Here is a summary of the notation/terminology of principal components.
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Matrices of Centered Columns
A Small p=2 Example

Below is a small p = 2 data set, with principal component direction
vectors and corresponding new coordinate system shown (dashed blue).
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Principal Components
Low-Dimensional Approximations to X

Best "low-dimensional" approximations to the data matrix X can be made
using principal component directions and scores. A dataset that replaces
case i with

(case i first principal component score) · v1
is the best possible 1-dimensional approximation to X (in terms of sum of
squared differences between elements of X and the approximation). A
data set that replaces case i with

L

∑
l=1
(case i principal component score l) · vl (1)

is the best possible L-dimensional approximation to X.
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Principal Components
Example Geometry of Low-Dimensional Approximations to X

Below is a representation of a p = 3 data set. Shown are the N = 9 data
points, its best 1-D approximation (black balls on the line defined by the
first PC direction) and its best 2-D approximation (black stars on the
plane).

Stephen Vardeman (Analytics Iowa LLC) Statistical Machine Learning-18 January 2018 11 / 15



Principal Components
Singular Value Decomposition and Eigen Analyses

Associated with principal component directions are "singular values."
These are non-negative values dl that decrease as the index on the
principal component direction vl increases. The sum of the squared
entries of the L-dimensional approximation to X in display (1) is ∑L

l=1 d
2
l .

So these are related to the portion of the variance of the (centered) values
in X accounted for by the first L principal components.

The principal component directions are also so-called eigenvectors of the
p × p matrix of inner products for columns of X, and the singular values
are the square roots of the so-called eigenvalues of that matrix. (Those
are in turn a multiple of the eigenvalues for the sample covariance or
correlation matrices for X). Principal components analysis is then
sometimes based not on the singular value decomposition of X, but on an
eigen analysis of a covariance or correlation matrix.
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Principal Components
Some Uses

Principal components analyses are more or less helpful depending upon the
profile in the singular values/eigenvalues. Where the dl are roughly all of
the same order of magnitude l = 1, 2, . . . , p, a principal components
analysis provides little insight into the structure of a training set. But
where there are a few large or small singular values, one has potentially
learned something valuable.

Where a few large singular values dominate, a few variables that are linear
combinations of the original variables (namely the first few linear
combinations ∑p

j=1 vljxj ) account for most of the variation seen in X.
Sometimes attempts are then made to interpret the loadings vlj
(particularly their signs) for a given l , hoping to see the principal
components as natural averages of and contrasts between input variables.
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Principal Components
More on Uses

Where a few singular values dominate, cases that more or less match on
the corresponding principal component scores are close together on a
low-dimensional approximation of the data set, and may be more easily
identified than in a full p-dimensional look at the training set. And this
dimension-reduction view of principal components suggests their use in
large p prediction problems where one might either use them in step-wise
forward-selection fashion (thereby employing "principal components
regression"), or might replace some group of predictors with a few of their
principal components in development of a predictor.

Where a few singular values are extremely small, they point out effective
linear dependencies among the xj s. Particularly where p variables xj are
actually transforms of a much smaller number of predictors, knowing that
very late principal components are essentially 0 can provide insight about
relationships among that small number of predictors.
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Principal Components
Ames Housing Example

In R, one can either center (and potentially scale) an N × p data set and
apply the svd() function, or directly apply the prcomp() function to
produce principal component directions. (The princomp() function finds
these via eigen analysis of the sample covariance or correlation matrix.)
Considering only the p = 13 Ames house price predictors (and not the
price variable) and standardizing before finding directions, below are the
loadings for the first 2 principal component directions.
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Clustering
Generalities

A second form of unsupervised learning methodology "clustering."
Typically the object in clustering is to find natural groups of rows or
columns1 of

X
N×p

=


x11 x12 · · · x1p
x21 x22 · · · x2p
...

...
. . .

...
xN1 xN2 · · · xNp


Sometimes all columns of X represent values of continuous variables so
that ordinary arithmetic applied to all its elements is meaningful. But
sometimes some columns correspond to ordinal or even categorical
variables. In light of all this, let xi i = 1, 2, . . . , r stand for "items" to
be clustered (that might—but need not—be rows or columns of X with
entries that need not be continuous variables).

1In some contexts one may want to somehow find homogenous "blocks" in a
properly rearranged X and "bi-clustering" is appropriate.
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Clustering
Generalities

Clustering methods are then built on some dissimilarity measure d (x, z)
that (at least for the items to be clustered and perhaps for other possible
items) quantifies how "unalike" items are. This measure is usually chosen
to satisfy

1. d (x, z) ≥ 0 ∀x, z
2. d (x, x) = 0 ∀x, and
3. d (x, z) = d (z, x) ∀x, z.
It may be chosen to further satisfy

4. d (x, z) ≤ d (x,w) + d (z,w) ∀x, z.
Where all of 1-4 hold, d is a "metric."
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Clustering
Generalities

If rows of X are being clustered and each column of X contains values of a
continuous variable, a squared Euclidean distance is a natural choice for a
dissimilarity measure

d (xi , xi ′) = ‖xi − xi ′‖2 =
p

∑
j=1
(xij − xi ′j )2

If columns of X are being clustered and each column of X contains values
of a continuous variable, with rjj ′ the sample correlation between values in
columns j and j ′, a plausible dissimilarity measure is

d (xj , xj ′) = 1−
∣∣rjj ′ ∣∣
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Clustering
Generalities

When dissimilarities between pairs of r items are organized into a
(non-negative symmetric) r × r matrix

D = (dij ) = (d (xi , xj ))

with 0s down its diagonal, the terminology "proximity matrix" is often
used. For some clustering algorithms and for some purposes, the
proximity matrix encodes all the information about items needed in order
to cluster them. The objective of clustering is a partitioning of the index
set {1, 2, . . . , r} into subsets such that the dij for indices within a subset
are small and the dij for indices i and j from different subsets are large.
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Partitioning Methods ("Centroid"-Based Methods)
Generalities

By far the most commonly used clustering methods are based on
partitioning related to "centroids," particularly the so-called "K -Means"
clustering algorithm for the rows of X for cases where the columns
contain values of continuous variables xj . The version of the method we
will describe uses squared Euclidean distance to measure dissimilarity.

In light of the fact that the algorithm is distance-based, to remove
dependence of what it produces on units that are used, it will typically be
appropriate to standardize columns of X before beginning.
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K-Means Algorithm (A Centroid-Based Method)
First Iteration of the K-Means Algorithm

The algorithm then begins with some set of K distinct "centers" c01, c
0
2,

. . . , c0K . They might, for example, be a random selection of the rows of
X. Each xi is assigned to that center c0k 0(i ) minimizing

d
(
xi , c0l

)
over choice of l (creating K clusters around the centers). Next, each c0k is
replaced with the corresponding cluster mean

c1k =
1

# of i with k0(i) = k ∑ I
[
k0(i) = k

]
xi
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K-Means Algorithm
mth Iteration of the Algorithm

At stage m with all cm−1k available, each xi is assigned to that center
cm−1km−1(i ) minimizing

d
(
xi , cm−1l

)
over choice of l (creating K clusters around the centers) and all of the
cm−1k are replaced with the corresponding cluster means

cmk =
1

# of i with km−1(i) = k ∑ I
[
km−1(i) = k

]
xi

This iteration goes on to convergence.
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K-Means Algorithm
Multiple Starts and Comparisons Across K

Multiple random starts for a given K (and then minimum values found for
each K ) are then compared in terms of

Total Dissimilarity (K ) =
K

∑
k=1

∑
xi in cluster k

d (xi , ck )

for c1, c2, . . . , cK the final means produced by the iterations. Then
considering the monotone sequence of Total Dissimilarities, the object is to
identify a value K beyond which there seem to be diminishing returns for
increased K to use as a final number of clusters.
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Medoid-Based Method
K-Medoid Algorithm First Step

A more general version of this algorithm (that might be termed a
K -medoid algorithm) doesn’t require that the entries of the xi be values of
continuous variables, but (since it is then unclear that one can even
evaluate, let alone find a general minimizer of, d (xi , ·)) restricts "centers"
to be original items. This algorithm begins with some set of K distinct
"medoids" c01, c

0
2, . . . , c0K that are a random selection from the r items xi .

Then each xi is assigned to that medoid c0k 0(i ) minimizing

d
(
xi , c0l

)
over choice of l (creating K clusters associated with the medoids). All of
the c0k are replaced with c

1
k the corresponding minimizers over the xi ′

belonging to cluster k of the sums

∑
i with k 0(i )=k

d (xi , xi ′)
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Medoid-Based Method
K-Medoid Algorithm

At stage m with all cm−1k available, each xi is assigned to that medoid
cm−1km−1(i ) minimizing

d
(
xi , cm−1l

)
over choice of l (creating K clusters around the medoids). All of the
cm−1k are replaced with cmk the corresponding minimizers over the xi ′
belonging to cluster k of the sums

∑
i with km−1(i )=k

d (xi , xi ′)

This iteration goes on to convergence. Multiple random starts for a given
K (and then minimum values found for each K ) are compared in terms of

K

∑
k=1

∑
xi in cluster k

d (xi , ck )

for c1, c2, . . . , cK the final medoids produced by the iterations.
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Hierarchical Methods
Generalities

There are both agglomerative/bottom-up methods and divisive/
top-down methods of hierarchical clustering. To apply a hierarchical
method, one must first choose a method of using dissimilarities for items
to define dissimilarities for clusters. Three common possibilities in this
regard are as follows.

For C1 and C2 different elements of a partition of the set of items, or
equivalently their r indices, the dissimilarity of C1 and C2 might be defined
as

1. D (C1,C2) = min {dij |i ∈ C1 and j ∈ C2} (this is the "single linkage"
or "nearest neighbor" choice),

2. D (C1,C2) = max {dij |i ∈ C1 and j ∈ C2} (this is the "complete
linkage" choice), or

3. D (C1,C2) = 1
#C1 ·#C2 ∑i∈C1, j∈C2 dij (this is the "average linkage"

choice).
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Hierarchical Methods
An Agglomerative Algorithm

An agglomerative hierarchical clustering algorithm then operates as
follows. Every item xi , i = 1, 2, . . . , r initially functions as a singleton
cluster. The minimum dij for i 6= j is found and the corresponding two
items are placed into a single cluster (of size 2). Then when there are m
clusters, the two clusters with minimum dissimilarity are merged to make a
single cluster, leaving m− 1 clusters overall. This continues until there is
only a single cluster.

The sequence of r different clusterings (with r through 1 clusters) serves
as a menu of potentially interesting solutions to the clustering problem.
These are often displayed in the form of a dendogram, where cutting the
dendogram at a given level picks out one of the (increasingly coarse as the
level rises) clusterings. Those items clustered together "deep" in the
tree/dendogram are interpreted to be potentially "more alike" than ones
clustered together only at a high level.
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Hierarchical Methods
A Divisive Algorithm

A divisive hierarchical algorithm operates as follows. Starting with a
single "cluster" consisting of all items, one finds the maximum dij and uses
the two corresponding items as seeds for two clusters. One then assigns
each xl for l 6= i and l 6= j to the cluster represented by xi if

d (xi , xl ) < d (xj , xl )

and to the cluster represented xj otherwise. At a stage where there are m
clusters, one identifies the cluster with largest dij corresponding to a pair
of elements in the cluster, splitting it using the method applied to split the
original "single large cluster" (to produce an (m+ 1)-cluster clustering).

This produces a sequence of r different clusterings (with 1 through r
clusters) that serves as a menu of potentially interesting solutions to the
clustering problem. And like the sequence produced by the agglomerative
algorithm, this sequence can be represented using a dendogram.

Stephen Vardeman (Analytics Iowa LLC) Statistical Machine Learning-19 April 2020 14 / 21



Hierarchical Methods
Thresholding

Both the agglomerative and divisive algorithms may be modified by fixing
a threshold t > 0 for use in deciding whether or not to merge two clusters
or to split a cluster. The agglomerative version terminates when all pairs
of existing clusters have dissimilarities more than t. The divisive version
terminates when all dissimilarities for pairs of items in all clusters are
below t. Employing a threshold has the potential to shorten the menu of
clusterings produced by either of the methods. (Thresholding the
agglomerative method cuts off the top of the corresponding full
dendogram, and thresholding the divisive method cuts off the bottom of
the corresponding full dendogram.)

The next slide provides a toy p = 1 example. Shown are dendograms for
agglomerative clustering for N = 20 values for all complete, single, and
average linkages. Cuts at 4 clusters make somewhat different groupings.
Some experimenting with this data set shows that 4-means clustering
places points 1-5, 6-9, 10-15, and 16-20 in clusters.
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Hierarchical Methods
Toy Example
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Partitioning and Hierarchical Methods
Another Toy Example

Below are plots of p = 2 data pairs. The left indicates (by both color and
symbol) how the pairs were generated from 6 bivariate normal
distributions. The center indicates the result of 6-means clustering. The
right shows complete linkage agglomerative clustering cut at 6 clusters.
The latter 2 are clearly different.
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Model-Based Clustering
Mixture Model

A completely different approach to clustering into K clusters is based on
mixture models. For purposes of producing a clustering, one might act as
if items x1, x2, . . . , xr are realizations of r iid random variables with
parametric marginal density

g (x|π, θ1, . . . , θK ) =
K

∑
k=1

πk f (x|θk ) (1)

for probabilities πk > 0 with ∑K
k=1 πk = 1, a fixed parametric density

f (x|θ), and parameters θ1, . . . , θK . (Without further restrictions the
family of mixture distributions specified by density (1) is not identifiable,
but we’ll ignore that fact for the moment.)
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Model-Based Clustering
K-Class Classification Model With Latent y

A way to think about this formalism is in terms of a K -class classification
model where values of y are latent/unobserved/completely fictitious. The
model development for classification implies that with gk (x) = f (x|θk )
that model produces mixture density (1) as the marginal density of x.
Further, in the model including a latent y ,

P [y = k |x] = πk f (x|θk )
∑K
k=1 πk f (x|θk )

is the (Bayes posterior) probability that x was generated by component k
of the mixture. It then makes sense to define as "clusters" of observations
xi , groups that would be similarly classified by an optimal classifier.
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Model-Based Clustering
K-Class Classification Model With Latent y

That is, cluster k can be the set of xi for which
πl f (xi |θl )

∑K
k=1 πk f (xi |θk )

or equivalently πl f (xi |θl )

is maximized across l by the index k. In practice, π, θ1, . . . , θK must be
estimated and estimates used in place of parameters in defining clusters.
An implementable clustering method is to define cluster k (say, Ck ) to be
the set of xi for which k maximizes

π̂l f
(
xi |θ̂l

)
(2)

across values of l .

The mclust() algorithm in R when applied to the 300 data pairs used in
the example on slide 17 divides cases into exactly the 6 groups indicated
on the left panel of that slide. This is, of course, consistent with the fact
that the algorithm is built on exactly the kind of MVN models used in the
data generation.

Stephen Vardeman (Analytics Iowa LLC) Statistical Machine Learning-19 April 2020 20 / 21



Model-Based Clustering
Model Fitting

Given the lack of identifiability in the unrestricted mixture model, it might
appear that prescription (2) could be problematic. But it is not. While
the likelihood

L (π, θ1, . . . , θK ) =
r

∏
i=1
g (xi |π, θ1, . . . , θK )

will have multiple maxima, using any maximizer for an estimate of the
parameter vector will produce the same set of clusters (2). It is common
to employ the "EM algorithm" in the maximization of L (π, θ1, . . . , θK )
(the finding of one of many maximizers). However, strictly speaking, that
algorithm is not intrinsic to the basic notion here.
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