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Bootstrap samples from the training set

A way to try to prevent a prediction methodology from producing 7 "too
sensitive" to exact characteristics of a training sample Is to employ
"boostrapping." This involves some large number, B, of "bootstrap"

samples of size N from the training set T. Each of these, T, T5,..., T;,
Is a random sample with replacement of size N from T. Applying a fixed
method of prediction B times produces for each b =1, ..., B

predictor 7P based on Tj,

Note that (in cases where all training cases are different) for large N on
average T, fails to contain about 37% of training cases. The probability

that a particular training case Is missed in a bootstrap sample is

(1 — N_l)N ~ e~ ! 22 37 for N of any reasonable size.




SEL bagging

"Bootstrap aggregation" or "Bagging" for SEL is then the use of

B
R () =5 Y P ()

The hope is to average (not-perfectly-correlated as they are built on not-
completely-overlapping bootstrap samples) low-bias/high-variance
predictors to reduce variance while maintaining low bias.
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Limiting SEL bagged predictor

. . s . . . “"B .
Even for fixed training set T and input x a bagging predictor fbag (x) is
random (varying with the selection of the bootstrap samples). Let E*
denote averaging over the creation of a single bootstrap sample and f* be
the predictor derived from such a bootstrap sample. Then

EF (x) = Foag (%)

is the "true" /large-B bagging predictor with simulation-based
approximation ﬁ)‘gg (x). (Unless the operations applied to a training set to
produce f are linear, E*f* (x) will differ from the predictor computed from

the full training data, 7 (x).)

?bfg (x) —E*F* (x) = ?—bag (x) as B — co by the law of large numbers.
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Bagging classifiers

A bagged predictor in the 0-1 loss classification case is

B
fong (X) = argmax ) _ I F'“b (x] = k}
k  b=1

(a majority vote combination of the individual classification trees). One
here expects that for each k a law of large numbers will imply that

—Ef[f*b(x = k| = P*[F* (x) = k] as B — oo

so that there is a limiting classifier

arg maxP* [f* (x) = K]
k

for which #*

b (x) is a simulation-based approximation.




Out-of-bag predictions for training cases

It Is common practice to make a kind of running cross-validation estimate
of error based on "out-of-bag" (OOB) samples as one builds a bagged
predictor. Then, for each b suppose one keeps track of the set of (OOB)
indices / (b) C {1,2,..., N} for which the corresponding training vector
does not get included in the bootstrap training set T,. In SEL contexts let

Vi = )3 R

Yig # of indices b < B such that i € /(b) , _, ‘~ i€l(b)

and in 0-1 loss classification contexts let

Vg = arg max Z [ [?b (xi) = k]
k b<B such that i€/(b)
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O0OB estimates of Err

Then in SEL regression contexts, a running cross-validation type of
estimate of Err is

OO0B ( E (vi — ¥ig)’

and a correpsonding estimate for 0-1 loss classification contexts is

1 N
00B (8) =+ Y-/ lvi # ]
::1

As B Increases, one can expect f, bag (x) to better approximate its limit
foag (X) and OOB(B) to better approximate Err for f,., (x).




Plotting and convergence of OOB(B)

Plotting OOB(B) versus B and determining when B is large enough that
OOB(B) seems to have leveled off at some limiting value is a common
way of determining when both 1) the extra/non-intrinsic noise introduced
Into the creation of a predictor by the bootstrap sampling has been
averaged away and 2) a reliable measure of efficacy for the bagged
predictor has been arrived at. Note that in spite of the fact that for small
B the (random) predictor f5 is built on a small number of samples trees
and is fairly simple, B is not really a complexity parameter, but is rather a
convergence parameter. )

Where losses other than SEL or 0-1 loss are involved, exactly how to
"bag" bootstrapped versions of a predictor is not altogether obvious, and
even what might look like sensible possibilities can do poorly.




