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Bagging of special trees

This i1s an elaboration of bagging applied to tree prediction. Suppose that
one makes B bootstrap samples of size N (random samples with
replacement of size V) from the training set T, say T{, T5,..., Tg. For
each sample, T}, develop a corresponding regression or classification tree

by

1. at each node, randomly selecting m of the p input variables and
finding an optimal single split of the corresponding rectangle over the

selected input variables (that reduces the splitting criterion), splitting
the rectangle, and

2. repeating 1 at each node up to a fixed depth or until no single-split
Improvement in splitting criterion is possible without creating a
rectangle with less than a small number of training cases, nuyi,.

Lt F*0 (x) be the corresponding tree-based predictor (taking values in R
in the regression case or in G ={1,2,..., K} in the classification case).
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Random forests for regression and classification

As in any SEL bagging case, a random forest predictor is then

and in any 0-1 loss classification case, a random forest classifier is

B
f5 (x) = arg max Z / F“b (x) = k]
kK b=1

and out-of-bag errors are made as for any application of bagging to these
contexts.

We note again that the number of bootstrap samples (and trees here) is a

\ convergence parameter and not a complexity parameter.
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Tuning/complexity parameters

The basic tuning parameters in the development of ?g (x) are then m, and
Nmin, and (if used) a maximum tree depth. The standard default values of
parameters are

e m= |p/3| and ny;, = 5 for regression problems, and

= LﬁJ and n.,;, = 1 for classification problems.

(The default n,;,, = 1 means that splitting terminates only because of
reaching a maximum depth or the impossibility of reducing the splitting
criterion with a single additional split.)

Rather than using default values of parameters, those can be chosen to
minimize the (large B) OOB error. Bagging provides its own "internal"
version of cross-validation and there is no need to wrap another
cross-validation around a random forest in order to approximate Err.

I




-~

0 training error for random forest classifiers

The default nnin = 1 for classification problems means that splitting
terminates only when reaching a maximum depth or completely
homogeneous rectangles. |f maximum tree depth really doesn’'t come into
play (because it is set to some value that is large in relative terms) this
produces random forest classifiers with O training error rate. Every
training case will be missed by only about 37% of B bootstrap samples, so
that about 63% of the B bootstrap trees correctly classify the case. So
majority voting means that the random forest will correctly classify the
case. But notice that this does not imply that the out-of-bag-error
OOB(B) will be 0. And it does not imply that OOB(B) for large B is
unreliable as an indicator of the likely performance of random forest
classifier. |t only implies that err = 0 is completely unreliable as an
Indicator of random forest classifier efficacy.




?? No over-fitting ??

There is a fair amount of confusing discussion in the literature about the
impossibility of a random forest "over-fitting" with increasing B. This
seems to be related to test error not initially-decreasing-but-then-
increasing-in-B (which is perhaps loosely related to OOB(B) converging
to a positive value associated with the limiting predictor f'f and/or 0
training error rate for a random forest classifier not implying over-fit).

But as HTF point out on their page 596, it is an entirely different question
as to whether f'f itself is "too complex" to be adequately supported by the
training data, T. (And the whole discussion seems very odd in light of the
fact that for any finite B, a different choice of bootstrap samples would
produce a different ?B as a new randomized approximation to 7. Even
for fixed x, the value ?g (x) is a random variable. Only ' (x) is fixed.)
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m and “correlation” and “strength” of trees

There is also a fair amount of confusing discussion in the literature about
the role of the random selection of the m predictors to use at each
node-splitting (and the choice of m) in reducing "correlation between trees
in the forest." The Breiman/Cutler web site http://www.stat.
berkeley.edu/ breiman/RandomForests/cc_home.htm says that the
"forest error rate" (presumably the error rate for J?rf) depends upon "the
correlation between any two trees in the forest" and the "strength of each
tree in the forest." While this assertion is perhaps believable in some
qualitative sense (if "correlation" means "similarity" and "strength" means
individual "predictive effectiveness") a precise technical meaning is not

clear.




Possible precise meanings

One possible technical meaning of "correlation between trees" is some
version of correlation between values of £*1 (x) and #*2 (x) as one
repeatedly selects the whole training set T in nd fashion from P and then
makes two bootstrap samples—Section 15.4 of HTF seems to use this
meaning.

A second possibility concerns "bootstrap randomization distribution"
correlation (for a fixed training set and a fixed x) between values £*! (x)

and 2 (x).

A possible technical meaning of "tree strength' is some test error for a
single f*P.




m and “correlation” and “strength” of trees cont.

HTF Section 15.4 goes on to suggest that increasing m increases both
"correlation" between and "strength" of the individual trees, the first
degrading error rate and the second improving it, and that the OOB
estimate of error can be used to guide choice of m (usually in a broad
range of values that are about equally attractive) if something besides the

default 1s to be used.




