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Modeling, loss, and expected loss 
 Development of “what would be the best predictor if I knew the case-

generating reality” gives a target to shoot for and guide predictor-making

 Modeling

 Loss function for    predicted and    observed

 Expected loss (“prediction error”) of (theoretical) predictor 
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Theoretically optimal prediction 
 The iterated form of the expectation shows what predictor has minimum 

predictor error … as a function of     the prediction should minimize 
conditional expected loss given 

 Optimal theoretical (not-training-set-dependent) predictor is

 Its prediction error is as small as possible (setting a limit on what can be 
achieved) and its form is what one hopes to approximate with a real 
predictor     built using a training set
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Squared error loss (SEL) 
 Where a target     is quantitative (of “interval type”) a common loss is 

squared error

 Here the theoretically optimal predictor is the conditional mean function

(unavailable for use predicting a new output, as     is not known)

 In this context “statistical machine learning” is “regression” and 
approximation of the conditional mean response given the input based 
on a training set
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K-class 0-1 loss classification 

 Where                                                            a natural loss is

(and the expected loss/prediction error is the overall mis-classification rate) 
 Here, with              the class-conditional density for          

 One wishes to predict the class with the maximum conditional probability 
given the input vector
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K-class classification with asymmetric loss 

 A natural generalization of 0-1 loss in K-class classification is for (possibly 
different) values            is 

 Here

 One wishes to predict the class with the maximum weighted conditional 
probability given the input vector
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Predicting K class probabilities 
 In a K-class classification model, one might wish to produce a K-vector
(ultimately representing assessments of how likely it is that         ) 
 The “cross-entropy” loss for this problem is

(the single observation/sample size 1 multinomial negative log-likelihood)
 Here (use of a Lagrange multiplier argument shows that) an optimal 

(vector) predictor    has  
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