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Quantifying the performance of a predictor 
 We suppose that training cases                                         and test case       

are iid from distribution     and that predictor    is built using the training 
set 

 Then expected prediction loss (alternatively called the “prediction error,” 
“test error,” and “generalization error”) suffered using     is

 Two decompositions of this help make clear what must be controlled in 
order to make prediction error small
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General decomposition of prediction error 
 Use the notation

 The situation can then be pictured as below in terms of the optimal, 
restricted optimal, and fitted predictors
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General decomposition of prediction error 
 The optimal      is potentially (typically) outside

 The “closest” (in terms of prediction error) one can get to it inside     is

 For any fixed training set               can be no better than 

 As the training set varies randomly, how much better      is than       varies 
randomly
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General decomposition of prediction error 

 So since here

we have

 This can be thought of as



SEL decomposition of prediction error 
 A more detailed and illuminating decomposition of Err is possible for SEL

 Begin with a measure of prediction performance at input vector 

(noting that                            ) 
 Then
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SEL decomposition of prediction error

 is the variance of prediction at

 is a kind of squared bias of prediction at

 is an unavoidable variance in outputs at 

 Clearly then

and SEL prediction error is a sum of averages (against the marginal of    ) of the 
three quantities at fixed inputs
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SEL decomposition of prediction error 

 Further analysis of                                          provides additional insight


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SEL decomposition of prediction error 


 The first term on the right is an average (across inputs) squared fitting 
bias

 The second term is an average (across inputs) squared model bias

 So ultimately for SEL



SEL decomposition of prediction error 
 The SEL decomposition is related to the general one in that



SEL decomposition of prediction error 
 The facts that

 the modeling and fitting penalties have elements of both bias and variance
 complex predictors tend to have low bias and high variance in comparison to 

simple ones

lead to the necessity of balancing these elements in predictor development 
and the so-called variance-bias trade-off

 Once more, in qualitative terms, it is the matching of predictor complexity 
to real information content of a training set that is at issue here


