Penalized Fitting and Choosing Complexity

Stephen Vardeman

Analytics Iowa LLC

ISU Statistics and IMSE

Penalized training error fitting and complexity

 A way of creating an explicit complexity parameter (and subsequently using it to choose a predictor complexity) involves penalization

Suppose that one can define for every element of the class of functions $S = \{g\}$ a complexity penalty $J[g] \geq 0$ and for every $\lambda \geq 0$ defines a measure of undesirability for g reflecting both fit to the training data and complexity by

$$\frac{1}{N} \sum_{i=1}^{N} L\left(g\left(\boldsymbol{x}_{i}\right), y_{i}\right) + \lambda J\left[g\right]$$

If one can optimize this objective over choices of g, call the optimizing function \hat{f}_{λ} . The smaller is λ , the more complex will be \hat{f}_{λ} .

Examples

Two simple examples of complexity penalties are below.

For p=1 SEL prediction on (0,1) with $\mathcal{S}=\left\{g|g''\text{ exists and }\int_0^1\left(g''\left(x\right)\right)^2dx<\infty\cap\right\}$, a complexity penalty might be

$$J[g] = \int_0^1 \left(g''(x) \right)^2 dx$$

(This penalizes how much g "wiggles.")

For p=1 SEL prediction on \Re and g of the form $g\left(x\right)=\beta_1x+\beta_2x^2+\beta_3x^3$ (for standardized x) a complexity penalty might be

$$J[g] = \beta_2^2 + \beta_3^2$$

that penalizes how wiggly/non-linear the cubic predictor is.

Pick-the-cv-winner choice of λ

• If λ^{opt} minimizes cross-validation errors and one ultimately employs λ^{opt} and the criterion

$$\frac{1}{N} \sum_{i=1}^{N} L(g(\mathbf{x}_i), y_i) + \lambda^{\text{opt}} J[g]$$

with the whole training set (T), the pick-the-winner predictor $\tilde{f} = \hat{f}_{\lambda^{opt}}$ is produced.