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Dummy variables (“one hot encoding”)

Often one or more inputs X; in a classification problem are categorical.
Numerical features are more directly handled. So consider construction of
numerical features from categorical variables in K-class models.

Suppose that some part of the input variable x, say x° (consisting of some
coordinates of the original p inputs), is categorical with M possible values
155,555 < X3+ (M will be the product of the numbers of possible
values for the individual inputs represented in x°. What follows could be
applied separately to multiple different categorical parts of x.)

One way to represent x“ is through a set of M — 1 dummy variables
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But this is problematic, as the number of dummy variables explodes with
both p and the number(s) of possible values of categorical inputs.
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"Partial” optimal features

In the K-class classification model, the variable X inherits one of K
possible conditional (on y) marginal distributions specified by

P (Ximlk) = P [x" = x|y = K]
For s (x5,) = Y054 p(x5,|k) the K — 1 ratios

p(x|K—1)
s (x°)

encode all the information about class membership available in x~. If all

one had available for classification was categorical input x“ and the

distributions p (x|k) were known perfectly, an optimal feature vector

derived from x“ would consist of these K — 1 features. In practice one

doesn’t know the distributions p (x“|k) perfectly, and only approximation
] to these K — 1 features is possible.
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Approximate “partial” optimal features
With N, the count of training cases with y = k, one can estimate as

p(xE |k) = Nk Zf case / has y; = k and categorical response x; = X’ |

Raw ratios of these would suffer large variance. A way to reduce variance
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of ratios of estimates p (x,|k) is to instead use something like
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Nkp(x{r:n‘k) +

(x5, k) =
,D(X ‘ N, + Ma

for some small & > 0. (This produces a compromise between the class k
empirical distribution of X“ across {x‘i,x% ..... x‘fw} and a uniform
distribution across the same set.)




Considerations for practice

A trade-off will often have to be made here regarding the size of M. The
larger is M the more effective will be the "partial" optimal features and the
less effectively will their empirical approximations represent them. A way
to try to handle this issue in practice is to build sets of these features with
a spectrum of values M and look for one that is overall most effective.

Further, some ISU experience with this idea seems to suggest that both
making these features and fitting a predictor on the same training set
produces hopelessly optimistic prediction of performance. (After all, the

making of the p (x$,|k) already involves the y;. Subsequent fitting is more
or less double use of them.) It seems that a training set may need to be
split into "feature-making" and "fitting" parts in order to avoid
over-fitting. (Cross-validation of all-including potential data splitting,
choice of M, and feature making—is needed to empirically gauge likely
performance on new cases.)




