"Stacking” for SEL and 0-1 Loss

Stephen Vardeman
Analytics lowa LLC
ISU Statistics and IMSE




Linear combinations of SEL predictors

What might be suggested in the spirit of combining predictors, but
without a Bayesian flavor? Suppose that M predictors are available (all
based on the same training data), 1?1, ?g ..... ?M- Under squared error loss,
one might seek a (weight) vector w for which the predictor
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is effective. As this linear form is inherently more flexible than any one of

its constituent predictor forms, it potentially provides important reduction
of model bias and improved overall prediction.




Optimal weight vector

|deally, one might hope to approximate
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That this could improve on any single one of the 7,,s is in some sense
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"obvious," since the w over which the minimization is done includes

vectors with one entry 1 and all others 0.




Theoretical optimizer
Consider the random vector (?1 fseh b (5] o s, fv (X) ,y)f — (ff,y). Let

E(ff!) and Eyf
T M x1

be respectively the matrix of expected products of the predictions and
vector of expected products of y and elements of f (under the the PV x P
joint distribution of (T, (x,y))). Upon writing out the expected square to
be minimized and doing some matrix calculus, it's possible to see that
theoretically optimal weights are of the form

W= (E (ff"))_l £y

Of course, this is not usable in practice, as typically the mean vector and
expected cross product matrix are unknown.




“LOOCV winner” weight vector

What can be done in practice is (for fi the mth predictor fit to

m

T —{(x/,yi)}, the training set with case / deleted) to look for a LOOCV
"winner" weight vector
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w2 = arg min Z Vi — Z Wi, (x,
w 1 =1

and then ultimately use the "stacked" predictor of y

)= 1 Wi G

m=1




Ad hoc SEL stacking

An ad hoc version of stacking-type averaging that (because of
computational load) is probably more common than the careful approach
outlined on the previous slide, is choice of weight vector w*®* based on
informal consideration of one's (CV-supported) evaluation of the
effectiveness of the individual predictors ?}n (x) and the (training set)
correlations between them. (Averaging multiple highly correlated
predictors can't be expected to be particularly helpful, and individually
effective predictors should get more weight than those that are relatively
speaking ineffective.)




Ad hoc stacking of 0-1 loss classifiers

The application of the general notion of stacking to 0-1 loss classification
has typically been treated on a very informal and ultimately unprincipled
basis. Probably the most common suggestion extant in the machine
learning world is to make classifications on a "majority vote" of an
ensemble of classifiers. This is completely unsupported by any sensible
theory. In this regard, see Vardeman and Morris "Majority Voting by
Independent Classifiers can Increase Error Rates" that appears in The
American Statistician in 2013 and their "Reply" to comments on the
paper by Baker and others that appeared in the same journal in 2014.




Principled stacking of 0-1 loss classifiers

A principled line of reasoning for the classification case is this. If a 0-1
loss classifier is any good, it approximates the optimal form. So if it has
an underlying voting function, that must be equivalent to (must be a
monotone transform of) an approximate likelihood ratio. What one is
doing Is attempting to make a better approximate likelihood ratio by
combining several of these. It is then sensible to use underlying voting
functions for the classifier (and the classifiers themselves in cases where no
such voting function is available) as features input into a tree-based
classification methodology.




Tree-based stacking of classifiers

A tree-based methodology is appropriate because of invariance to
monotone transformation of coordinates of inputs and the fact that
constituent voting functions are potentially on completely different scales,
e.g. In some cases involving approximations for linear functions of

P |y = 1|x| and in others approximations for £° (x) directly Details of
sensible cross-validation to choose parameters of the constituent
classification methods and the final tree-based method in this context
remain to be considered. But the basic approach is clear and principled.




