More on Optimal 2-Class Classifiers

Stephen Vardeman

Analytics Iowa LLC

ISU Statistics and IMSE

Notations for 2-class models

We have identified a theoretically optimal (0-1 loss) K-class classifier as

$$f(\mathbf{x}) = \underset{a}{\operatorname{arg\,max}} P\left[y = a | \mathbf{x}\right]$$

By far, the most important version of this is the K=2 case. And for this case, there are some very important additional general insights to be had.

For K=2, for various purposes different ones of the (arbitrary and completely equivalent) codings for the possible values of y

$$\{0,1\}$$
, $\{1,2\}$, and $\{-1,1\}$

prove useful. For the time being, employ the first and abbreviate P[y=1] as π (so that $P[y=0]=1-\pi$), and write $p(\mathbf{x}|1)$ and $p(\mathbf{x}|0)$ for the two class-conditional densities for \mathbf{x} .

Optimal 0-1 loss classification

Since

$$P[y=1|\mathbf{x}] = \frac{\pi p(\mathbf{x}|1)}{\pi p(\mathbf{x}|1) + (1-\pi)p(\mathbf{x}|0)} \text{ and}$$

$$P[y=0|\mathbf{x}] = \frac{(1-\pi)p(\mathbf{x}|0)}{\pi p(\mathbf{x}|1) + (1-\pi)p(\mathbf{x}|0)}$$

an optimal classifier is

$$f(\mathbf{x}) = I[P[y = 1|\mathbf{x}] > .5]$$

$$= I[P[y = 1|\mathbf{x}] > P[y = 0|\mathbf{x}]]$$

$$= I\left[\mathcal{L}(\mathbf{x}) > \frac{(1-\pi)}{\pi}\right]$$

and $f(\mathbf{x}) = 1$ when $P[y = 1|\mathbf{x}]$ is large, or equivalently the likelihood ratio $\mathcal{L}(\mathbf{x})$ is large.

N-P theory, asymmetric loss classification

Notice that this makes connection to classical statistical theory and identifies the optimal classifier as a Neyman-Pearson test of the simple hypotheses $H_0: y=0$ versus $H_a: y=1$ with "cut-point" the ratio $(1-\pi)/\pi$.

As a slight generalization of this development, note that for constants $L_0 \ge 0$ and $L_1 \ge 0$ and an asymmetric loss

$$L(\widehat{y},y) = L_y I[\widehat{y} \neq y]$$

an optimal classifier is

$$f(\mathbf{x}) = I\left[\mathcal{L}(\mathbf{x}) > \frac{(1-\pi)L_0}{\pi L_1}\right]$$

Shifting class probabilities

An important issue in classification models is the effect of changes in π on both $P[y=1|\mathbf{x}]$ and (optimal classifier) $f(\mathbf{x})$. There are situations, for example, in which π is very extreme (one class is rare and the terminology "extreme class imbalance" is commonly used) and it is then common practice to build a predictor using a training set made with relative frequency of y=1 that is π^* , a value that is much more moderate (nearer to .5) than π . The obvious question is how to translate results for the synthetic value π^* to results for the real value π .

Effects on input-conditional class probabilities

Since

$$P[y = 1|\mathbf{x}] = \frac{\mathcal{L}(\mathbf{x})}{\mathcal{L}(\mathbf{x}) + \frac{(1-\pi)}{\pi}}$$

it follows that

$$\mathcal{L}(\mathbf{x}) = \frac{(1-\pi)}{\pi} \left(\frac{P[y=1|\mathbf{x}]}{1-P[y=1|\mathbf{x}]} \right)$$

So subscripting P with π or π^* depending upon which marginal probability of y=1 is operating (in models with the same class-conditional densities $p(\mathbf{x}|1)$ and $p(\mathbf{x}|0)$),

$$P_{\pi}\left[y=1|\mathbf{x}\right] = \frac{\frac{\left(1-\pi^*\right)}{\pi^*}\left(\frac{P_{\pi^*}\left[y=1|\mathbf{x}\right]}{1-P_{\pi^*}\left[y=1|\mathbf{x}\right]}\right)}{\frac{\left(1-\pi^*\right)}{\pi^*}\left(\frac{P_{\pi^*}\left[y=1|\mathbf{x}\right]}{1-P_{\pi^*}\left[y=1|\mathbf{x}\right]}\right) + \frac{\left(1-\pi\right)}{\pi}}$$

Effect on optimal 0-1 loss classifiers

From above it is obvious how to translate an estimate of $P_{\pi^*}[y=1|\mathbf{x}]$ made from a synthetically balanced training set to one for the real situation described by π . Further, an optimal classifier is

$$I\left[\left(\frac{P_{\pi^*}\left[y=1|\mathbf{x}\right]}{1-P_{\pi^*}\left[y=1|\mathbf{x}\right]}\right) > \frac{\pi^*\left(1-\pi\right)}{\left(1-\pi^*\right)\pi}\right]$$

and it is obvious how to translate an estimate of $P_{\pi^*}[y=1|\mathbf{x}]$ made from a synthetically balanced training set to an approximately optimal classification for the real situation described by π .

For example, considering the k-nearest neighbor set-up using a training set made with relative frequency of y=1 that is π^* when the real probability that y=1 is π , the right use of a neighborhood of ${\bf x}$ containing $n_1({\bf x})$ cases ${\bf x}_i$ with y=1 and $n_0({\bf x})=k-n_1({\bf x})$ with y=0, is to classify according to

$$I[n_1(\mathbf{x})(1-\pi^*)\pi > n_0(\mathbf{x})\pi^*(1-\pi)]$$