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Density estimates and classifiers

The problem of describing structure for x € P might be phrased in terms
of estimating a pdf for the variable. So the problem:

based on Xy, Xo, ..., xy iid with (unknown) pdf g, estimate g

Is of iIndependent interest. But of present importance is the fact that an
optimal 0-1 loss classifier is for x € P a k maximizing

Tep (x| k)

and if one can estimate each p (-|k) based on the part of a training sample
with y = k (and approximates each 77, with the fraction of the training
sample with y = k) an approximately optimal classifier can potentially be
made.
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Parzen kernel density estimates

Temporarily suppose that p = 1. For ¢ (-) the standard normal pdf (other
choices of basic "kernel" are possible, but this is most common) and a

andwidth A =0
1. f~—8
A )

is the normal density for mean 6 and standard deviation A. The Parzen
(kernel) estimate of a density at x, g (x), is then
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an average of values of normal densities centered at the x; in a training set.




A p=1 example
Below are plots of a pdf, g (in black), a sample of size N = 100 from the

distribution and (normal kernel) density estimates made with bandwidths
A = 2 (red),.4 (blue), and .5 (green).
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Normal kernels in density estimation

A density estimate that results from using a normal kernel represents the
distribution of "a random choice from the training set perturbed by a
mean 0 normal error with standard deviation equal to the bandwidth." If
the bandwidth is extremely small, the density estimate will essentially
consist of "spikes" at the x; in the training set. If it is extremely large, the
density estimate will essentially consist of a normal density centered
around the mean of the x;. Useful bandwidths will be neither extremely
small nor extremely large.

A natural generalization of this to p dimensions is to let ¢ () be a (mean
0) MVN,, density. One should expect that unless N is huge, this
methodology will be reliable only for fairly small p (say 3 at most) as a
means of estimating a general p-dimensional pdf.




An example p=2 density

Below are two representations of a particular 2-D density (a mixture of two
bivariate normals).
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2-D density estimates

Below are 6 samples of N = 100 observations from the mixture density
pictured on the previous slide and corresponding bivariate density
estimates made using the kde2d function in the MASS package (and its
default choice of "bandwidth" covariance matrix).




f Direct approximation for optimal classifiers

Consider what form an estimated-density-approximately-optimal classifier

e e—

f(x) = arg?axP v = Klp (x|k)

takes where symmetric Gaussian (MVN,, (0, /’tzl)) kernels are used to

e

produce the p (x\k_). A bit of algebra shows that estimating
class-conditional densities based on the parts of the training set with
y = k and using training set relative frequencies to estimate class
probabilities, an approximately Bayes classifier is

" 1
fL (x) = arg max Z exp (wu—x;”g)
k

k i s.t. yvi=

This is a plausible form—classifying to class k when x is "close to"
relatively many training inputs from class k—and bandwidth A could be

] chosen by cross-validation.
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An example of a ratio of 2-D density estimates

The possibility of using direct estimates P [y = k|p (x|k) to make
approximately optimal classifiers basically depends upon how well
likelihood ratios can be estimated. The graphic below shows for samples
of N = 100 from the example bivariate density and from a uniform density
on [—3, 3]2, and a ratio of density estimates.

Mixture Mormal Sample and Density Est Uniform Sample and Density Est Ratio of Estimates




Large p and “naive Bayes” classification

The p = 2 example used here looks reasonably hopeful, as the third graph
on the previous slide is some approximation of the original example density
(which is proportional to its ratio to a uniform /constant density). But the
normal mixture and uniform densities are very simple and the curse of
dimensionality makes density estimation for even moderate p (let alone
estimation of ratios) problematic. So direct approximation of optimal
classifiers via density estimates also seems problematic for p at all
large.

One related idea that has proven to be of some use is that of estimating
only low-dimensional (small p) marginals of a class-conditional density for
X (for which density estimation is feasible) and making a product of them
to substitute for an estimate of the joint density (effectively acting like the
input X can be modeled as having independent pieces) in a classifier. This
has been called a "naive Bayes" classification method.
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Marginals for the 2-D density

It is easy to see that the naive Bayes idea can fail to be useful even
for small p. The density below is the marginal density for both
coordinates of x (both x; and xy) in the bivariate example we have been
using. The next panel contrasts the original bivariate density to a density
of independence with this one as marginals.

Marginal Density for the Bivariate Example
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Product of marginals for the example

The original density is clearly quite different from one of independence
with the same marginals.

0.6 Product Density
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