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il I
Vectors, scalar products, and sums

Most of applied mathematics in general and statistical machine learning in
particular is built on the notions of "linear combinations" of various
objects and "inner products" of these (that in turn lead to coherent
notions of their "sizes" of and "distances" between them). Here we
briefly review what is necessary for a theory of such objects and operations

to make sense.

First, a vector (or linear) space V consists of objects v, w, ... such that if
v € V and a € R, then the object av makes sense and belongs to V, and
for v.and w in V the object v + w also makes sense and belongs to V.
The archetypal vector spaces are the Euclidean spaces h” where elements
are "ordinary" p-dimensional vectors. But other kinds of vector spaces are
useful in statistical machine learning as well, including function spaces.
Take for example the set of functions on [0, 1| that have finite integrals of
their squares. (This space is sometimes known as Ly ([0, 1]).)




Vector spaces of functions

More or less obviously, if g : [0, 1] — R with fol (g (x))” dx < co and
a € R, then ag (x) makes sense, maps [0, 1] to R and has
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-/0 (ag(x})de—aQ/G (g(x))gdx<oo

Further, if g [0, 1] — R with f; (g (x))*dx < o and h: [0,1] — R with

fo (h(x) ) dx < oo, then the function g (x) + h(x) makes sense, maps
[0,1] to R and has finite integral of its square.




Inner products

An inner product on a vector space V is a symmetric (bi-)linear positive
definite function mapping V x V — Jt. That is, (v,w) is an inner
product on V If it satisfies

L. (w,v) = (v,w) YV v,w €V (symmetry),
2. (av,w) =a(v,w) Vv,weVandacR,
(v+uw)=(v,w)+ (u,w) Y uv and w € V (bi-linearity), and
3. (v,v) >0Yve&Vand (v,v) =0 if and only if v= 0 (positive
definiteness).




Examples

Of course Euclidean p-space is a vector space with inner product defined
as the "dot-product" of p-dimensional vectors v and w is

p
(vow) =v'w =) vw
=t

It is possible to argue that in the case of the L, (|0, 1]) function space, the
integral of the product of two elements provides a valid inner product, that

IS

(gTh)E/OIg(X)h(X)dX

satisfies properties 1. through 3.




Norms and distances

An inner product on a vector space V leads immediately to notions of size
and distance. The norm (i.e. the "size" or "length") of an element of V
can be defined as

vl =/ (v, v)

Then the distance between two elements of V can be taken to be the size
of the difference between them. That is, the distance between v and w
belonging to V (say d (v, w)) derived from the inner product is

d (v, w) = v~ w]|

This satisfies all the properties necessary to qualify as a "metric" or

"distance function," including the important triangle inequality.




Examples

In Euclidean p-space, the norm is the geometrical length of a p-vector (the
root of the sum of the p squared entries of the vector) and the associated
distance is ordinary Euclidean distance.

In the case of the L, (|0, 1]) function space, the norm/size of an element g

lell = \//0 (8 ()" dx

and the distance between elements g and h is

d(g, h) = \/f (g (x) — h(x)) dx




Other concepts like those in Euclidean spaces

Many other useful notions commonly understood in Euclidean spaces
generalize directly to inner product spaces. v and w € V are
perpendicular or orthogonal when (v,w) = 0. Subspaces of V can be
generated as all linear combinations of a set of elements of V and are
commonly referred to as the "span" of the set of elements. A basis for a
subspace of V is a set of linearly independent vectors (no linear
combination of them is the 0 vector) that span the subspace.
"Orthonormal" bases (whose elements are perpendicular and each of
norm 1) for V (or for subspaces of V) are particularly attractive, as they
provide very simple representations for "projections" of v € V onto the
span of any set of them, as a linear combination of basis vectors where
coefficients are the inner products with the corresponding basis vectors.




\
Projections and “low-dimensional” approximations

In the context of machine learning, projections of a vector v are very
usefully thought of as "low-dimensional" approximations to v (in terms
of a "few" basis vectors). (The dimension of a subspace of V is, just as in
ordinary Euclidean spaces, the number of vectors in a basis for it.)
Geometry of Euclidean cases (where subspaces are geometrical
hyperplanes containing the origin and geometrical hyperplanes are
subspaces potentially shifted from the origin by addition of a vector not in
the subspace) is helpful in interpreting statistical machine learning
constructs in more abstract inner product spaces.




