The Singular Value Decomposition of \boldsymbol{X}

Stephen Vardeman
Analytics Iowa LLC
ISU Statistics and IMSE

Singular vectors and values

If the $N \times p$ matrix \mathbf{X} has rank r then it has a so-called singular value decomposition (SVD) as

$$
\underset{N \times p}{\mathbf{X}}=\underset{N \times r}{\mathbf{U}} \underset{r \times r}{\mathbf{D}} \mathbf{V}^{\prime} \mathbf{V}^{\prime}
$$

where \mathbf{U} has orthonormal columns (left singular vectors) spanning $C(\mathbf{X})$, \mathbf{V} has orthonormal columns (right singular vectors) spanning $C\left(\mathbf{X}^{\prime}\right)$ (the row space of \mathbf{X}), and $\mathbf{D}=\boldsymbol{\operatorname { d i a g }}\left(d_{1}, d_{2}, \ldots, d_{r}\right)$ for

$$
d_{1} \geq d_{2} \geq \cdots \geq d_{r}>0
$$

The d_{j} are the "singular values" of \mathbf{X}. (For a real non-negative definite square matrix-a covariance matrix-the SVD is the eigen decomposition, $\mathbf{U}=\mathbf{V}$, columns of these matrices are unit eigenvectors, and the SVD singular values are the corresponding eigenvalues.)

Low rank approximations to \boldsymbol{X} matrices

If $\mathbf{U}_{/}$and \mathbf{V}_{l} are matrices consisting of the first $I \leq r$ columns of \mathbf{U} and \mathbf{V} respectively, then

$$
\mathbf{X}^{* \prime}=\mathbf{U}_{l} \boldsymbol{\operatorname { d i a g }}\left(d_{1}, d_{2}, \ldots, d_{l}\right) \mathbf{V}_{l}^{\prime}
$$

is the best (in the sense of squared distance from \mathbf{X} in $\Re^{N_{p}}$) rank $=I$ approximation to \mathbf{X}. (Application of this kind of argument to covariance matrices provides low-rank approximations to complicated covariance matrices.)

SVD and OLS

Since the columns of \mathbf{U} are an orthonormal basis for $C(\mathbf{X})$, the projection of an output vector \mathbf{Y} onto $C(\mathbf{X})$ is

$$
\widehat{\mathbf{Y}}^{\mathrm{OLS}}=\sum_{j=1}^{r}\left\langle\mathbf{Y}, \mathbf{u}_{j}\right\rangle \mathbf{u}_{j}=\mathbf{U} \mathbf{U}^{\prime} \mathbf{Y}
$$

In the full rank (rank $=p) \mathbf{X}$ case, this is completely parallel to
$\widehat{\mathbf{Y}}^{\mathrm{OLS}}=\sum_{j=1}^{r}\left\langle\mathbf{Y}, \mathbf{q}_{j}\right\rangle \mathbf{q}_{j}=\mathbf{Q} \mathbf{Q}^{\prime} \mathbf{Y}$ (for \mathbf{Q} from the $Q R$ decomposition) and is a consequence of the fact that the columns of both \mathbf{U} and \mathbf{Q} form orthonormal bases for $C(\mathbf{X})$. In general, the two bases are not the same.

SVD and $\boldsymbol{X}^{\prime} \boldsymbol{X}$

Now using the SVD of a full rank (rank p) \mathbf{X},

$$
\mathbf{X}^{\prime} \mathbf{X}=\mathbf{V D}^{\prime} \mathbf{U}^{\prime} \mathbf{U D} \mathbf{V}^{\prime}=\mathbf{V D}^{2} \mathbf{V}^{\prime}
$$

which is the eigen (or spectral) decomposition of the symmetric and positive definite $\mathbf{X}^{\prime} \mathbf{X}$. Eigenvalues are the squares of the SVD singular values for \mathbf{X}.

Geometry and the SVD of \boldsymbol{X}

The vector

$$
\mathbf{z}_{1} \equiv \mathbf{X v}_{1}
$$

is the product $\mathbf{X w}$ with the largest squared length in \Re^{N} subject to the constraint that $\|\mathbf{w}\|=1$. Further,

$$
\mathbf{z}_{1}=\mathbf{X}_{\mathbf{1}}=\mathbf{U D} \mathbf{V}^{\prime} \mathbf{v}_{1}=\mathbf{U D}\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)=d_{1} \mathbf{u}_{1}
$$

and we see that this squared length is d_{1}^{2} and that this vector points in the direction of \mathbf{u}_{1}.

Geometry and the SVD of \boldsymbol{X} cont.

In general,

$$
\mathbf{z}_{j}=\mathbf{X}_{j}=\left(\begin{array}{c}
\left\langle\mathbf{x}_{1}, \mathbf{v}_{j}\right\rangle \\
\vdots \\
\left\langle\mathbf{x}_{N}, \mathbf{v}_{j}\right\rangle
\end{array}\right)=d_{j} \mathbf{u}_{j}
$$

is the vector $\mathbf{X} \mathbf{w}$ with the largest squared length in \Re^{N} subject to the constraints that $\|\mathbf{w}\|=1$ and $\left\langle\mathbf{w}, \mathbf{z}_{\boldsymbol{\prime}}\right\rangle=0$ for all $/<j$. This squared length is d_{j}^{2} and this vector points in the direction of \mathbf{u}_{j}.

