The Singular Value Decomposition of **X**

Stephen Vardeman

Analytics Iowa LLC

ISU Statistics and IMSE

Singular vectors and values

If the $N \times p$ matrix **X** has rank r then it has a so-called singular value decomposition (SVD) as

$$\mathbf{X}_{N\times p} = \mathbf{U}_{N\times r} \mathbf{D}_{r\times r\times r\times p} \mathbf{V}'$$

where **U** has orthonormal columns (left singular vectors) spanning $C(\mathbf{X})$, **V** has orthonormal columns (right singular vectors) spanning $C(\mathbf{X}')$ (the row space of **X**), and $\mathbf{D} = \mathbf{diag}(d_1, d_2, \dots, d_r)$ for

$$d_1 \geq d_2 \geq \cdots \geq d_r > 0$$

The d_j are the "singular values" of **X**. (For a real non-negative definite square matrix—a covariance matrix—the SVD is the eigen decomposition, $\mathbf{U} = \mathbf{V}$, columns of these matrices are unit eigenvectors, and the SVD singular values are the corresponding eigenvalues.)

Low rank approximations to X matrices

If U_l and V_l are matrices consisting of the first $l \leq r$ columns of U and V respectively, then

$$\mathbf{X}^{*l} = \mathbf{U}_l \operatorname{diag}(d_1, d_2, \dots, d_l) \mathbf{V}_l'$$

is the best (in the sense of squared distance from \mathbf{X} in $\Re^{N\rho}$) rank = I approximation to \mathbf{X} . (Application of this kind of argument to covariance matrices provides low-rank approximations to complicated covariance matrices.)

SVD and OLS

Since the columns of \mathbf{U} are an orthonormal basis for $C(\mathbf{X})$, the projection of an output vector \mathbf{Y} onto $C(\mathbf{X})$ is

$$\widehat{\mathbf{Y}}^{\mathrm{OLS}} = \sum_{j=1}^r \left\langle \mathbf{Y}, \mathbf{u}_j
ight
angle \, \mathbf{u}_j = \mathbf{U} \mathbf{U}' \mathbf{Y}$$

In the full rank (rank = p) **X** case, this is completely parallel to $\widehat{\mathbf{Y}}^{\text{OLS}} = \sum_{j=1}^{r} \left\langle \mathbf{Y}, \mathbf{q}_{j} \right\rangle \mathbf{q}_{j} = \mathbf{Q}\mathbf{Q}'\mathbf{Y}$ (for **Q** from the *QR* decomposition) and is a consequence of the fact that the columns of both **U** and **Q** form orthonormal bases for $C(\mathbf{X})$. In general, the two bases are not the same.

SVD and X'X

Now using the SVD of a full rank (rank p) X,

$$\mathbf{X}'\mathbf{X} = \mathbf{V}\mathbf{D}'\mathbf{U}'\mathbf{U}\mathbf{D}\mathbf{V}' = \mathbf{V}\mathbf{D}^2\mathbf{V}'$$

which is the eigen (or spectral) decomposition of the symmetric and positive definite $\mathbf{X}'\mathbf{X}$. Eigenvalues are the squares of the SVD singular values for \mathbf{X} .

Geometry and the SVD of X

The vector

$$\mathbf{z}_1 \equiv \mathbf{X} \mathbf{v}_1$$

is the product $\mathbf{X}\mathbf{w}$ with the largest squared length in \Re^N subject to the constraint that $\|\mathbf{w}\|=1$. Further,

$$\mathbf{z}_1 = \mathbf{X}\mathbf{v}_1 = \mathbf{U}\mathbf{D}\mathbf{V}'\mathbf{v}_1 = \mathbf{U}\mathbf{D} \left(egin{array}{c} 1 \ 0 \ dots \ 0 \end{array}
ight) = d_1\mathbf{u}_1$$

and we see that this squared length is d_1^2 and that this vector points in the direction of \mathbf{u}_1 .

Geometry and the SVD of X cont.

In general,

$$\mathbf{z}_j = \mathbf{X} \mathbf{v}_j = \left(egin{array}{c} \langle \mathbf{x}_1, \mathbf{v}_j
angle \ dots \ \langle \mathbf{x}_N, \mathbf{v}_j
angle \end{array}
ight) = d_j \mathbf{u}_j$$

is the vector $\mathbf{X}\mathbf{w}$ with the largest squared length in \Re^N subject to the constraints that $\|\mathbf{w}\| = 1$ and $\langle \mathbf{w}, \mathbf{z}_I \rangle = 0$ for all I < j. This squared length is d_i^2 and this vector points in the direction of \mathbf{u}_j .