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SVD for X with centered columns

When all the columns of X have been centered (each 1'x; = 0 for x; the
Jth column of X), there is additional terminology and insight associated
with SVD as describing the structure of X. Note that centering is often
sensible In unsupervised learning contexts because the object is to
understand the internal structure of the data cases x; € R”, not the
location of the data cloud (that is easily represented by the sample mean
vector). So accordingly, we first translate the data cloud to the origin.

Principal components ideas are then based on the singular value
decomposition of X
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PC directions, scores, and loadings

Columns of V (namely vy, vy, ...,v,) are called the principal component
directions in R” of the X;, and the elements of the vectors

(X1, v})

zj = Xvj = : = dju;

(Xn, Vj)

namely the (x;,v;), are the principal components of the x;. (The ith
element of z;, (x;,v;), is the value of the jth principal component for case
I, or the corresponding principal component score. The entries of the
p X 1 vector v; are the component weights or loadings for the jth
component. A 0 loading means that the corresponding column of X is
ignored in the creation of z;.) Notice that (x;,v;) v; is the projection of x;
onto the 1-dimensional space spanned by v;.




Summary of terminology

Below is a summary of the language just introduced. (The N X p matrix
of inner products (x;,v;) is UD.)
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Toy p=2 example

The figure below shows scatterplots of a raw (red dots) and corresponding
standardized (blue dots) p = 2 dataset. The red arrow points in the
direction of the raw data first right singular vector (i.e. points "at" the raw
data). The blue arrow is in the first principal component direction of

the standardized data (pointing in the direction of their greatest variation).
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More Interpretation for SVDs

It is worth thinking a bit more about the form of the product
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that we've already said Is the best rank / approximation to X.
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In fact it 1s

and its ith row is Zj':l (Xi, vj) v, which (since the v; are orthonormal) is

the transpose of the projection of x; onto C (V).




More Interpretation

That 1s,

(X1, V1) (X1,V2) (X1, vy)
X* = : Vi + 5 vo+ -+ : v
(Xn. V1) (Xn. v2) (XN, vp)
= z1V] + 2oV, + - - + Z)v]
= Xviv] + Xvov) + - - - + Xvv)

a sum of rank 1 summands, producing for X*/ a matrix with each x; in X
replaced by the transpose of its projection onto C (V).




More interpretation

: g — ey opadl . pduegansd : . : '
Since z; = d;u;, ZiN, = c;{,ujvj-. Then since the u;s and v;s are unit
vectors, the sum of squared entries of both z; and ZJ;VJ':-

non-increasing in j. So the z; and zj-v;- decrease in "size" with j, and

IS dj-z. These are

directions vi,vo, ..., v, are successively "less important” in describing
variation in the x; and in reconstructing X.

This agrees with common interpretation of cases where a few singular
values are much bigger than the others. There "simple structure"” in the
data is that observations can be more or less reconstructed as linear
combinations of a few orthonormal vectors.




Low rank approximations to N=9 data points

Below is a portrayal of a toy p = 3 dataset. Shown are N = 9 data points,
the rank = 1 approximation (black balls on the line defined by the first PC
direction) and the rank = 2 approximation (black stars on the plane).
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Interpretation of PCs

To summarize interpretation of principal components of a centered
dataset, one can say the following:

Principal components analysis amounts to the development of an
alternative coordinate system in which to represent a
p-dimensional dataset. One effectively finds a rotation of the
original coordinate system to a new one where axes are defined
by the p-vectors vi,Vo, ...V, In which variation of the data in
the directions v; decreases with increasing j (as much as possible
with each increment of j). The N-vectors u; are unit vectors and
their multiples z; = d;u; are the vectors of coordinates of the N
data vectors in the new/rotated coordinate system. (And the d;
are the magnitudes of these vectors of new coordinates in RV.)
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A few small singular values

lzenman, In his discussion of "polynomial principal components" points
out that in some circumstances the existence of a few very small singular
values can also identify important simple structure in a dataset. Suppose,
for example, that all singular values except d, =2 0 are of appreciable size.
One simple feature of the dataset is then that all (x;,v,) 72 0, i.e. there is
one linear combination of the p coordinates x; that is essentially constant
(namely (x,vp)). The data fall nearly on a (p — 1)-dimensional
hyperplane in t¥. In cases where the p coordinates x; are not functionally
independent (for example consisting of centered versions of 1) all values,
2) all squares of values, and 3) all cross products of values of a smaller
number of functionally independent variables), a single "nearly 0" singular
value identifies a quadratic function of the functionally independent
variables that must be essentially constant, a potentially useful insight
about the dataset.




SVD of X and eigen analysis of of X’X

The singular value decomposition of X means that both X’X and XX’
have useful representations in terms of singular vectors and singular values.

Consider first X'X (that is most of the sample covariance matrix). The
SVD of X means that

X'X = VD2V

and it's then clear that the columns of V are eigenvectors of X'X and the
squares of the diagonal elements of D are the corresponding eigenvalues.
An eigen analysis of XX then directly yields the principal component
directions of the data, and through the further computation of the inner

products (x;, v;), the principal components z; (and hence the singular
vectors u;) are available.
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Sample covariance matrix for N data p-vectors

Note that ;

—X'X

N
is the (/N-divisor) sample covariance matrix for the p input variables
X1, X0, «nn, x,. (When X has standardized columns—i.e. each column of
X, x;, has (1,x;) = 0 and (x;,x;) = N— the matrix XX is the sample
correlation matrix for the p input variables x1, xo, ..., X,.) The principal
component directions of X in R”, namely vy, vy, ..., V,, are also unit

eigenvectors of the sample covariance matrix. The squared lengths of the
principal components z; in RN divided by N are the (N-divisor) sample
variances of entries of the z;, and their values are

1 1 d?
22 = dwuidi =




SVD of X and eigen analysis of X X’

The SVD of X also implies that
XX = UDV'VDU’ = UD?*U’

and it's then clear that the columns of U are eigenvectors of XX’ and the
squares of the diagonal elements of D? are the corresponding eigenvalues.
UD then produces the N x r matrix of principal components of the data.
It does not appear that the principal component directions are available
even Indirectly based only on this second eigen analysis.




