Graphical Spectral Features

Stephen Vardeman
Analytics lowa LLC
ISU Statistics and IMSE




-
“Roughly connected” sets of data points

Another variant of principal components ideas concerns "spectral features"
of a dataset built on thinking of data cases as corresponding to vertices on
a graph. This material has emphases in common with a local version of
multi-dimensional scaling treated in the notes, and can sometimes provide
a way to separate "unconventional" but distinct structures of data points
in . The basic motivation is to not necessarily look for "convex"
groups of points in p-space, but rather for "roughly connected"/
"contiguous" sets of points of any shape in p-space.




Adjacencies

Begin with N vectors X7, X2, ..., xpy in RP. Consider weights

w;; = w (||x; — x;||) for a decreasing function w : |0,00) — [0, 1] and use
them to define similarities/adjacencies s;;. (For example, we might use
w (d) = exp (—d*/c) for some ¢ > 0.) Similarities can be exactly

s;j = w;;, but can be even more "locally" defined as follows. For fixed k

consider the symmetric set of index pairs

N — 4 (7. )| the number of j with w;;y > wj; is less than k
R J or the number of /" with wirj > wij 1s less than k

(an index pair is in the set if one of the items is in the k-nearest neighbor
neighborhood of the other). One might then define
sii = wiil [(i,]) € N].




Adjacency matrix and node degrees

We'll call the matrix

S = (s5)iei..N
=L N

the adjacency matrix, and use the notations

N
gi=) s;j and G =diag (g1, &,....8n)
=1

It is common to think of the points x1, X2, ..., Xy In RP as nodes/vertices
on a graph, with edges between nodes weighted by similarities s;;, and the
g; so-called node degrees, i.e. sums of weights of the edges connected to
nodes /. In such thinking, s;; = 0 indicates that there is no "edge"
between case / and case .




Graph Laplacians

The matrix

L=G~-—8S

is called the (unnormalized) graph Laplacian, and one standardized (with
respect to the node degrees) version of this is

L =6 =1-6S
and a second (symmetric) standardized version is

| = G—1/2LG—1/2 — 1 - G—l/QSG—I/Q




Representation of a quadratic form

Note that for any vector u,

u'Lu = Zg,u — ZZUIUJ.SU

=

(Z } sid+) i?) Y e

i=1j=1

so that the N X N symmetric L is nonnegative definite.




Spectral/eigen analyses

Consider the spectral /eigen decomposition of L and focus on the small
eigenvalues. For vq,..., V,, eigenvectors corresponding to the 2nd
through (m + 1)st smallest non-zero eigenvalues (since L1 = 0 there is an
uninteresting 0 eigenvalue), let

V=(vi,....Vn)

These are "graphical spectral features" and one might think of cases with
similar rows of V as "alike." And small eigenvalues are associated with

linear combinations of columns of L that are close to 0.




Graphical Spectral Features

Why should this work to identify connected structures in a training set?
For v; a column of V that is a eigenvector of L corresponding to a small
eigenvalue A;, will have

N N
A =viL 1 220
I =V “f——ZZSU Vi — Vi) =

Iljl

and points X; and x; with large adjacencies must have similar
corresponding coordinates of the eigenvectors.

HTF essentially argue that the number of "0 or nearly 0" eigenvalues of L
Is Indicative of the number of connected structures in the original N data
vectors. A series of points could be (in sequence) close to successive
elements of the sequence but have very small adjacencies for points
separated in the sequence. "Structures" by this methodology need NOT
be "clumps" of points, but could be serpentine "chains" of points in R”.
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A second version

A second version of this is easily built on the symmetric normalized
Laplacian, L™. Its eigenvalues are nonnegative and it has a 0 eigenvalue.
Let A] < .-+ < A’ be the 2nd through (m + 1)st smallest eigenvalues
and v{,...,v,, be corresponding eigenvectors. Then for A} such a small
non-negative eigenvalue,

N N o o
Aj =L = v (677612 uj‘_3§;§:s i ) o
U s
r—lj 1 '\«‘gf \/3}'

and points x; and x; with large adjacencies must have similar
corresponding coordinates of the vector G~ 1/2y V;. So one might treat

vectors G~ 1/2\:; (or perhaps normalized versions of them) as a second
version of m graphical features.




Markov chain motivation

It is also easy to see that

P=G"S

Is a stochastic matrix and thus specifying an N-state stationary Markov
Chain. It is plausible that the standardized graph Laplacian L=1—P
iIdentifies groups of states such that transition by such a chain between the

groups is relatively infrequent (the MC more typically moves within
groups).




