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Non-OLS linear SEL predictors

There Is more to say about the development of a linear predictor

f(x)=xp (1)

for an appropriate ﬁ & RP than what is said in books and courses on
ordinary linear models (where ordinary least squares is used to fit the linear
form to all p input variables or to some subset of M of them). In what
follows we continue the basic notation

Xy )41

X = Z and Y =
N xp ' N x1

X YN

and consider non-OLS choices ofﬁ in (1) based on such training data.




Technical framework

An alternative to seeking a suitable level of complexity in a linear
prediction rule through subset selection and least squares fitting of a linear
form to the selected variables, is to employ a shrinkage method based on a
penalized version of least squares to choose a vector B < RP. Here we
consider several such methods, all of which have parameters that function

as complexity measures and allow behavior to range between f = 0 and

5 AOLS , _
=27 depending upon complexity.

The implementation of these methods is not equivariant to the scaling used
to express the input variables x;. So that there is a well-defined scaling,
we assume here that the output variable has been centered (i.e. that
(Y,1) = 0) and that the columns of X have been standardized (and
if originally X had a constant column, it has been removed).




fl Equivalent optimization formulations

: : 5 ~rid :
For a A > 0 the ridge regression coefficient vector ﬁ;ﬁ T EeRPis

~ridge .
B, = =13 (1 {(Y =XB)' (Y —XB)+ Ap'B} (2)
CRP
: : B 5
Here A is a penalty/complexity parameter that controls how much B Is

shrunken towards 0. The unconstrained minimization problem expressed
in (2) has an equivalent constrained minimization description as

BIE = argmin (Y —XB) (Y — XB) (3)
B with ||B|*<t

for an appropriate t > 0. (Corresponding to A used in (2), is

~ridge || : . :
ﬁ; “II used in (3). Conversely, corresponding to t used in (3), one
Ul may use a value of A in (2) producing the same error sum of squares.)
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Geometry of ridge optimization

Here is a representation of the constrained optimization problem solved by
? w ~ridge
the ridge coefficient vector, B, =~ for p = 2.
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Ridge form and shrinking OLS coefficients

The unconstrained form (2) calls upon one to minimize

(Y =XB)' (Y —XB) +AB'B

and some vector calculus leads directly to

~ridg e

B, 5 = (X'X4+A)T' XY
Then, using the singular value decomposition of X (with rank = r) it's
possible to argue that

: 2
~ridge ~ridge : d:
i)

j=1

5 ; . S rid
Coefficients of the orthonormal basis vectors u; producing Y;nge are

: w . ~0LS
shrunken version of the coefficients producing Y . The most severe

shrinking is enforced in the directions of the smallest principal components
of X (the u; least important in making up low rank approximations to X).
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Shrinking OLS prediction vectors

From

- 2
=ridge ~ridge : d:
4

Jj=1

the norm of the vector ridge predictions for the N centered responses is

a  F 2 N°
y 2
- You)
J; (d'?jLA) :

and is thus decreasing in A.

~ridge
¥

Notice also from (4) that

~ridge 4 1
Y, xz( ; )(Y,xmw
i1 a; + A




Shrinking OLS coetfficient vectors
Thus

~ridge 4 1
ﬁ?x Z(d12+)t) <Y'ij>vj

J=i

and

2
~ridge 4 || 2
= Y, Xv;
which is also clearly decreasing in A.

An upshot of these facts about "shrinking" is that one can think of (the
penalty parameter) A as a complexity parameter that defines paths in RN
and R? from OLS predictions and coefficients to degenerate (0) ones
passing through a spectrum of plausible (ridge) linear predictors.




Coefficient grouping effect

There is a "grouping effect" associated with ridge regression. Highly
correlated inputs, say x; and x;/, (being standardized so they both have
standard deviation 1) have ridge regression coefficients of essentially the
same magnitude. This can be understood as follows. Without loss of
generality, assume that x; and x;/ are highly positively correlated (so they
are essentially the same variable). For any regression coefficients 5; and
B and number a (including B;/ (B; + Bj)) the contribution of x; and x;
to ¥ (and thus the error sum of squares) is

Bixi + Bjrxyr = a (Bj + Bjr) x; + (1 — &) (B; + Bjr) x;r

But the contribution of a (; + B;/) and (1 —«) (B; + B;) to the sum of
squared regression coefficients is

o (B + By)? + (1= ) (B + Bp)? = (o2 + (1—w)?) (; + B’

minimized at & = 1/2, where the coefficients for x; and X are the same.
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Ridge “effective degrees of freedom”

The function

-
df () = tr (X (XX +A1) " X') = ) (di ”\)

Is called the "effective degrees of freedom" associated with the ridge
regression. In regard to this choice of nomenclature, note again that if

A = 0 ridge regression is ordinary least squares and this is r, the usual
degrees of freedom associated with projection onto C (X), i.e. trace of the

projection matrix onto this column space and that as A — oo, the effective
il
degrees of freedom goes to 0 and (the centered) Vi~

(corresponding to a constant predictor).

goes to 0




More general forms for effective df

~ridge ~ridge _
Notice that since Y ° = XB, © = X (X'X+ Al) ' X'Y = MY for

M=X (X"X — x\l)_l X', if one assumes that
CovY = ol

(conditioned on the x; in the training data, the outputs are uncorrelated
and have constant variance ¢?) then

effective degrees of freedom =tr (M) = — Z Cov (¥, i) (5)

This suggests that tr(M) is a plausible definition for effective degrees of
freedom for any linear fitting method Y = MY, and that more generally,
the last form in (5) might be used in situations where Y is other than a
linear form in Y. The last form is a measure of how strongly the outputs
In the training set can be expected to be related to their predictions.




Another alternative form for effective df

Some additional insight into the notion of effective degrees of freedom is
this. In the linear case, with Y = MY,

v 9y,

effective degrees of freedom = tr (M) = =
=1 ay';

and we see that the effective degrees of freedom is some total measure of
how sensitive predictions are at the training inputs X; to the corresponding
training values y;.

This raises at least the possibility that in nonlinear cases, an
approximate/estimated value of the general effective degrees of freedom
(5) might be the random variable




