Non-OLS Linear SEL Prediction: LASSO etc.

Stephen Vardeman
Analytics lowa LLC
ISU Statistics and IMSE




Reiteration of the context

So that the relative sizes of regression coefficients makes sense (because
they are unit-free) and we can talk about properties of methods that
involve them, we continue assume here that the output variable has
been centered (i.e. that (Y,1) = 0) and that the columns of X have
been standardized (and if originally X had a constant column, it has
been removed).




[.asso formulations

The "lasso" (least absolute selection and shrinkage operator) and some
other relatives of ridge regression are the result of generalizing the ridge
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fora g > 0. That produces the unconstrained optimization version
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and the constrained optimization version
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The so called "lasso" is the g = 1 case of (1) or (2), and in general these
have been called the "bridge regression' problem.




Shrinking and variable selection
IThat 1s, Tor & >0

B = agmin (Y —XB) (Y —XB) (3)
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Because of the shape of the constraint region
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(in particular its sharp corners at coordinate axes) some coordinates of
~lasso

B, are often 0, and the lasso automatically provides simultaneous
oy =015 : . :
shrinking of B toward 0 and rational subset selection. (The same is

true of cases of (2) with ¢ < 1.)
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Geometry of lasso optimization

Here is a representation of the constrained optimization problem solved by
s ~lasso
the lasso coefficient vector, . for p = 2.
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Bridge regression constraint regions

For comparison purposes, here are representations of p = 2 bridge

regression constraint regions for t = 1.
have "corners," but are not convex.
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Lasso effective degrees of freedom

It Is not obvious how to produce a useful formula for
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effective degrees of freedom =

for the lasso. But Zhou, Hastie, and Tibshirani in 2007 (AOS) argued

i ~lasso .
that this is the mean number of non-zero components of 8, . Obviously

then, the random variable

e ~|asso

df (A ) = the number of non-zero components of 8,

Is an unbiased estimator of the effective degrees of freedom.




Elastic net formulations

There are a number of modifications of the ridge/lasso idea. One is the
"elastic net" idea, a compromise between the ridge and lasso methods.
For an a € (0,1) and some t > 0, this is defined by

~elastic ne
ﬁmt f arg min (Y—Xﬁ)’(Y—Xﬁ)
B with Y7, ((1—a)|B)|+ap?)<t

(The constraint is a compromise between the ridge and lasso constraints. )
Constraint regions have "corners" like the lasso regions but are otherwise
more rounded than the lasso regions. The equivalent unconstrained
optimization specification of elastic net fitted coefficient vectors is for

A >0and A >0

~elastic net

‘B?q.ftz — arg min {(Y — X‘B)’ (Y —XB)+ A i 1Bj| + A2 iﬁ?} (4)

BERP




Elastic net constraint regions

Below are some representations of p = 2 elastic net constraint regions for
t = 3 (made using some code of Prof. Huaiqing Wu) that clearly show the
compromise nature of the elastic net.
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Elastic net estimated df

Several sources suggest that a modification of the elastic net idea, namely

~elastic net

(L+A2) By, A,

performs better than the original version.

~elastic net
For B, 1, with r non-zero components and X. made up of the
corresponding columns of X, estimated effective degrees of freedom for the
unmodified form of the elastic net are

df (A1, A2) = tr (X. (X(X. +200) X, ) = /
(A1, Ag) = tr [ X (X Xs +A2l) ~ X j; d? + A,
(for d;’s the singular values of X,). The modified form has estimated
effective degrees of freedom (14 Ay ) times this value.




f glmnet elastic net parameterization

A different parameterization of the unconstrained elastic net optimization

criterion (4) used in the glmnet package is (for A > 0 and 0 < a < 1)
~ENet GoE g
that B, , be a vector B € P minimizing
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It is easy enough to work out the relationships between parameter vectors
(A1,A2) and (A, &) above. The pair (A, a) clearly corresponds to
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in formulation (4). On the other hand, a bit of algebra shows that the pair
(A1, Ao) there corresponds here to
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Cross-validation choice of e-net parameters

Fixing attention (wolog) on the specification of an elastic net predictor
corresponding to form (5), the ridge class of predictors is the a =0
version of the elastic net and the lasso class is the « = 1 sub-class.
So choosing a best elastic net predictor by cross-validation over values of
both « (that controls how the penalty is apportioned between lasso and
ridge parts) and A (that in governs the overall strength of the
penalization) will do at least as well as is possible considering only ridge or
lasso predictors.

The train() routine in the caret package will optimize cross-validation
errors across both a and A, calling the glmnet routine (searching over a
user-specified grid of (a, A) pairs).




Nonnegative garrote

Breiman proposed a different shrinkage methodology he called the

nonnegative garotte that attempts to find "optimal"” re-weightings of the
~0LS

elements of B . Thatis, for A > 0 and S5 (c) =
35 / P
(Y — Xdiag (c) ﬁOLS) (Y — Xdiag (c) ,BOLS) Preliian consideres the

vector optimization problem defined by

p
C), = arg min {SS(C)Jr)LZCj}
i=1

ceRP with ¢;=0, j=1,...,p

and the corresponding fitted coefficient vector
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Comparison of shrinkage method coefficients

HTF provide explicit formulas for fitted coefficients for the special case of
X with orthonormal columns. (See their Table 4.3.)

Method of Fitting
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fl Comparison of shrinkage methods li

The figure below provides plots of the functions (in the previous table) of
OLS coefficients giving ridge (blue), lasso (red), and nonnegative garotte

(green) coefficients for the "orthonormal predictors" case. (Solid lines are
A =1 plots and dotted ones are for A = 3.)
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Interpretation of comparisons

Best subset regression provides a kind of "hard thresholding" of the least
squares coefficients (setting all but the M largest to 0) while ridge

regression provides shrinking of all coefficients toward 0. Both the lasso
and the nonnegative garotte provide a kind of "soft thresholding" of the
coefficients. These latter two are both combined shrinkage and variables

selection methods.




Extensions/generalizations of lasso

Many lasso-like penalized least squares methods have been suggested,
tailored to various special circumstances. Notable are "group lasso,"
"sparse group lasso," and "fused lasso" methods. To indicate what has
been proposed, we'll illustrate the (2-) group lasso. If for some reason the
coordinates of x € RP break naturally into 2 groups (say the first / and last
p — | coordinates of x), fora A > 0, a "group lasso" coefficient vector is

“~Eroup 1asso / P
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Of course, there can be more than 2 groups, and when each group is of
size 1 this reduces to the simple Lasso. The geometry of constraint
regions associated with this methodology suggests why it tends to
"zero-out" coefficients in groups associated with the penalty.
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Geometry of group lasso constraint region

Here is a representation of a p = 3 constraint region associated with a
grouped lasso where coordinates 1 and 2 of x are grouped separate from
coordinate 3. The corresponding lasso region is shown for comparison
purposes.
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Other problems/losses (beyond SEL)

Our development of the lasso and related predictors for SEL has been built
on penalization of the error sum of squares, Nerr. All of the
representations here are special to this case. But as long as one has an
effective /appropriate optimization algorithm there is nothing to prevent
consideration of other losses. Possibilities include at least

1. using a negative Bernoulli loglikelihood as a loss and considering
penalized logistic regression (either as simply a means of fitting
P [y = 1|x], or for purposes of producing a good voting function for

classification), or

2. using a penalized exponential or hinge loss for purposes of producing
a good voting function for classification, or

3. using a penalized negative AUC loss for producing a good ordering
function O.

The first of these Is an option in the famous glmnet package in R.




