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Derived inputs and PLS

Here we continue to assume that the columns of X have been
standardized and Y has been centered. We discuss a second prediction
methodology involving some number M < p of predictors derived from the
original inputs x;, so-called Partial Least Squares (PLS) Regression. The
shrinking methods treated thus far take no account of Y in determining
directions or amounts of shrinkage. PLS employs Y.




First PLS component

Let )
Z Yo = XX'Y
=1
For w; = XY/ HX’YH CXwy; = z¢/ ||X"YH Is a linear combination of the
columns of X maximizing, subject to the constraint that |w| = 1, the
quantity
(Y. Xw)

which is essentially the absolute sample covariance between the variables y
and x'w. (The first principal component of X maximizes |(Xw, Xw)|
subject to the same constraint.)




Second PLS component

Then define X! by orthogonalizing the columns of X with respect to z;.
That is, define the jth column of X' by

X;, 2
xlzxj-——< - 1>z1

! (z1,21)
and take :
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=1

(For wy = Xy/ ||X1"YH Xlwy =2,/ ||X1"YH is the linear combination
of the columns of X! maximizing

(Y. X w),

subject to the constraint that |[w| = 1.)




PLS regression

Then for | > 1, define X' by orthogonalizing the columns of X'~ with
respect to z;. That is, define the jth column of X' by

| >
X: 7
/ [—1 < J /

and let
p
zipa = ) (Y. ) xf = XIX"'Y
=1

Partial least squares regression uses the first M of these variables z; as
Input variables.




PLS coefficient vector and predictor

The PLS predictors z; are orthogonal by construction. Using the first M
of these as regressors, one has the vector of fitted output values

¢FLs % (XY, zJ,

ZJ ZJ

Since the PLS predictors are (albeit recursively-computed data-dependent)

~PLS
linear combmatmns of columns of X, it is possible to find a p-vector B,
~PLS
(namely (X’ X) X'Y ) such that
~PLS ~PLS
v = xBy,

and thus produce the corresponding linear prediction rule

#PLS

(x) . xﬁm (1)




PLS predictor complexity

It seems like in (1), the number of components, M, should function as a
complexity parameter. But then again there is the following. When the

o : ; . ~0LS
X; are orthogonal, it's fairly easy to see that z; I1s a multiple of Y |
~PLS  =PLS ~PLS  =O0LS ;
B, =B == ﬁp = B, and all steps of partial least squares

after the first are simply providing a basis for the orthogonal complement

~0LS
of the 1-dimensional subspace of C (X) generated by Y (without
improving fitting at all). That is, here changing M doesn't change
flexibility of the fit at all.

Presumably, when the x; are nearly orthogonal, something similar happens,
and one might thus expect PLS to be most effective as a shrinkage
method where there are substantial correlations among columns of X.




PLS complexity and effective df

This observation about PLS in cases where predictors are orthogonal has
another simple implication. That is that there will be no naive form for
effective degrees of freedom for PLS. Since with z; the jth principal
component of X and, say,

ZM — (2,290 « JERF)

¥R =z ((ZM)!ZM) b (ZM)’Y

principal components regression on M components has effective degrees of
freedom M. But the fact that the "Z"" matrix corresponding to PLS
depends upon Y makes PLS nonlinear in Y. And the "orthogonal X"
argument shows that a PLS predictor with M = 1 can have effective

we have

degrees of freedom as large as rank (X).
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PLS, PCR, and OLS

PLS is a kind of compromise between principal components regression and
ordinary least squares. To see this, note that maximizing

(Y, Xw)]

subject to the constraint that ||w|| = 1 is equivalent to maximizing the
sample covariance between Y and Xw i.e.

sample standard sample standard sample correlation
deviation of y deviation of x'w between y and x'w

or equivalently

. . 2
sample variance \ [ sample correlation (2)
of x'w between y and x'w

subject to the constraint.




PLS, PCR, and OLS cont.

Now if only the first term (the sample variance of x'w) were involved in
(2), a first principal component direction would be an optimizing wy, and

21 = HX’YH Xwy a multiple of the first principal component of X. On the

A0LS A0LS
other hand, if only the second term were involved, ﬁ / Hﬁ ‘

be an optimizing wy, and z; = ¥ HX!YH / H‘BOLSH

‘ would

a multiple of the

vector of ordinary least squares fitted values. The use of the product of
two terms can be expected to produce a compromise between these two.

This logic applied at later steps in the PLS algorithm then produces for z,
a compromise between a first principal component of X'~! and a suitably

constrained multiple of the vector of least squares fitted values for Y based
on the matrix of inputs X'™!. X' has columns that are the corresponding
columns of X minus their projections onto the span of {zy,25,..., z;} and

C(X)DC (X)) DdcC (X?)---




