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Tensor product bases

If p =2 (x = (x1, x) takes values in R?) one might proceed as follows.
For {hi1, h1o, ..., hip, } a set of spline basis functions of x; and

{ho1, hoo, ..., howm, } a set of spline basis functions of x, one might
consider the set of My - M> basis functions based on x defined by

gik (x) = hyj (x1) hox (x2)

and corresponding forms for regression splines
f(x) =) Birgi ()
1.k

This potential method suffers the explosion in the size of a tensor product
basis as p increases. For example, using K knots for cubic regression
splines in each of p dimensions produces (4 + K)” basis functions for the
p-dimensional problem.




Penalization and MARS

Some kind of shrinking of coefficients or forward selection algorithm s
needed to produce any kind of workable fits with the huge numbers of
basis functions in tensor product bases.

The multivariate smoothing routines provided in the mgcv R package of
Wood allow for quadratic penalized (ridge-regression-type) fitting involving
tensor product bases.

The following discussion of "MARS" concerns one kind of forward
selection algorithm using (data-dependent) linear regression spline basis
functions and products of them for building predictors




MARS and hockey stick functions

MARS (multivariate adaptive regression splines) is based on use of
data-dependent "hockey-stick" or "hinge" functions (the kind of functions
leading to piece-wise linear regression splines when p = 1) and their
products as (data-dependent) "basis functions." That is, with input space
RP consider data-dependent basis functions built on the Np pairs of

functions

h,ﬂ (X] = (Xj s X,j)+ and hg‘g (X) = (X,'J,' — Xj)Jr (1)

(xji is the jth coordinate of the /th input training vector and both h;;; (x)
and hjj> (x) depend on x only through the jth coordinate of x). MARS
builds predictors sequentially, making use of these "reflected pairs"
represented on the next slide.




Hockey stick functions
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Figure: A "reflected pair" of "hockey-stick" functions represented as depending
upon x; (and constant in all other inputs).




MARS sequential model building

MARS goes roughly as follows:
1. ldentify a pair (1) so that

Bo + Bi1hij1 (x) + P12hij2 (x)
has the best SSE possible. Call the selected functions
g11 = hjj1 and g2 = hjjp

and set
f1 (x) = o + P11gu1 (X) + Bi2gi2 (x)
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MARS sequential Model building cont.

2. At stage / of the predictor-building process, with predictor

=1
100 = Bo+ T (Bongmn (00 + B2 00)

m=1

in hand, consider for addition to the model, pairs of basis functions
that are either of the basic form (1) or of the form

hrjl (X) Eml (X) and hfj2 (X) 8m1l (X)

or of the form

hfjl (X) Em? (X) and h:'j? (Xj Em?2 (X)

for some m </, subject to the constraints that no x; appears in any
candidate product more than once (maintaining the piece-wise
i linearity of sections of the predictor).




MARS sequential model building cont.

Additionally, one may decide to put an upper limit on the order of the
products considered for inclusion in the predictor. The best candidate
pair in terms of reducing SSE gets called, say, g1 and gj» and one sets

/
?;‘ (X) — BO + Z (Bmlgml (X) fix BngmQ (X))

m=1

One might pick the complexity parameter / by cross-validation, but the
standard implementation of MARS apparently uses instead a kind of
generalized cross validation error.
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MARS sequential model building cont.

The usual MARS generalized cross-validation error is

prﬂ (}’r' —f (x;))2

M1\ 2
(1-"3)

where M (/) is some kind of degrees of freedom figure. One must take
account of both the fitting of the coefficients f in this and the fact that
knots (values x;;) have been chosen. The HTF recommendation is to use

GCV(I) =

M (1) =21+ (2 or 3) - (the number of different knots chosen)

(where presumably the knot count refers to different x;; appearing in at
least one g1 (X) or gmo (X)).




MARS example

Below is a graphical portayal of a simple predictor (of, y, home sales price)
of the kind a MARS algorithm can produce.
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