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Function optimization problem

A way of avoiding the direct selection of knots for a regression spline is to

instead, for a smoothing parameter A > 0, consider the problem of finding
(for a < min {x;} and max{x;} < b)

fy — - argmin | (Z (yi — h(x))° +x\/ (h' (x ? dx )

functions h with 2 derivatives

In a surprising piece of mathematics, It turns out that this seemingly
abstract problem has a tractable solution.




-~

Natural cubic spline solution

As it turns out, fy is a natural cubic spline with knots at the distinct
values x; in the training set. That is, for a set of (now data-dependent, as
the knots come from the training data) basis functions for such splines

(here we're tacitly assuming that the N values of the input variable in the
training set are all different)

N
MBS Z Bajhi (x)

where the E}Lj are yet to be identified.




Development of the coefficient vector

For

it is the case that

So for 8’ = (61,0>, ..., Oy ) and

we then have that ;
] (g" (x))" dx = 6'Q6

(Since for every 0 this is non-negative, () is non-negative definite.)
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Development of the coefficient vector cont.

Then with the notation

NI>_<|N - (hj (xi))

(i indexing rows and j indexing columns) the criterion to be optimized to
find £, is for functions of the form (1)

(Y —H8) (Y — HO) + 16’10
and some vector calculus shows that the optimizing 0 is
B, = (HH+AQ) " H'Y (2)

a kind of "generalized ridge regression" coefficient vector.




Fitted values and smoother matrix

Corresponding to (2) is a vector of smoothed output values
Y, =H(HH+AQ)  HY

and the matrix

S\=H(HH+AQ) 'H

is called a smoother matrix. As it turns out, S) (is non-negative definite
symmetric of rank N and) has the property that

5,9\ =X 5,

meaning that Sy — $,S, Is non-negative definite.




Contrast with OLS

Consider a case where some fairly small number, p, of fixed basis functions
are employed In a regression context. That is, for basis functions
b1, by, ..., b, suppose

B = (b (x;

Nxp ( j(' !))

OLS produces the vector of fitted values

1

Y =B (B'B) B'Y

and the projection matrix onto the column space of B, C (B), is
Pg =B (B"B)_1 B’. Pg is (non-negative definite symmetric of rank p)
and has the property that

PgPg = Pp

l.e. Pg is idempotent.




l Effective df and the Reinsch form

In analogy to the ridge regression case, one might define effective degrees

of freedom for S, by
df (A) =tr (S, ) (3)

and we proceed to develop motivation and a formula for this quantity.

For
K= (H) QH!
it Is the case that
S\=H(HH+1Q) H
=H(H (I+AH™'QH)H) H’
—HH ! (1+ AH'QH)  H'H
— (14+AK)™*

1

1

| This is the so-called Reinsch form for S,, from whence S;l = 1+ AK.




Penalty interpretation of the K matrix

Some vector calculus shows that ‘?,1 — S,Y Is a solution to the
minimization problem

minimize ((Y —v)' (Y —v) + Av'Kv) (4)

ve RN

so that the matrix K (= (H")_1 OH ™) can be thought of as defining a
"penalty" in fitting a smoothed version of Y. (There is more on this to
come.)
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Eigen decomposition of the smoother matrix

Then, since S, Is symmetric non-negative definite, it has an eigen
decomposition as

N
SA — UDU" = Z deJ;Uj- (5)

j=1

where columns of U (the eigenvectors u;) comprise an orthonormal basis
for RV and
D =diag (d;, d, ..., dy)

for eigenvalues of S,
dy 2 dp 2 - 2dy >0

It turns out to be guaranteed that di = d» = 1.




Eigen decompositions of the smoother matrix and K

An eigenvalue for K, say 77, solves

det (K—nl) =0

det (K — 77l) = det (% (1 +AK) — (14 An) I])

So 1+ Ay must be an eigenvalue of | +AK and 1/ (1 + A#) must be an
eigenvalue of S = (I + x\K)_l. So for some j we must have

1
dr =
T 1+ Ay

~




Eigen decompositions and df

Observing that 1/ (1 + An) is decreasing in 17, we may conclude that

1
d: =
. [ ANN—j+1

(6)

for
M 2122 2Hy—2>Hy—1 =4y =0

the eigenvalues of K (that themselves do not depend upon A). So in light
of (3), (5), and (6), the smoothing effective degrees of freedom, df(A), are

N N-2 4
tr (SA) == d =2+
= ! j; 1-4-A%;

which is clearly decreasing in A (with minimum value 2 in light of the fact
that S has two eigenvalues that are 1).
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Eigen vectors of the smoother matrix and K

Further, consider u;, the eigenvector of S, corresponding to eigenvalue d;.
SAUJ; = djl.lj so that

I.lj' = S;ldjuj = (l =F /)LK) dj'l.lj'

so that
u;, = dju; + dj)LKuj

and thus

1—ydl;
Kuj = ( Ad,j> Uj = IIN-—j+1M;
e

That is, u; is an eigenvector of K corresponding to the (N — j + 1)st
largest eigenvalue. That is, for all A the eigenvectors of S, are
eigenvectors of K and thus do not depend upon A.




Shrinking of the prediction vector
Then, for any A

N
¥y =S¥ = ) o (w, Y

J=1

— (ul, Y) iy - (Ug, Y) Up + Z , _ u; (7)

and ?,1 Is a shrunken version of Y that progresses from Y to the
projection of Y onto the span of {u;,us} as A runs from 0 to co. (It is
possible to argue that the span of {u;, us} is the set of vectors of the form
cl + dx, as is consistent with the original function optimization objective
function.) The larger is A, the more severe the shrinking overall. Further,
the larger Is J, the smaller i1s d; and the more severe is the shrinking of Y
in the u; direction. (The unpenalized directions u; and uy have no
associated shrinking.)
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Shrinking of prediction and coefficient vectors

In the context of cubic smoothing splines, large j correspond to "wiggly"
(as a functions of coordinate / or value of the input x;) u;, and the
prescription (7) calls for suppression of "wiggly" components of Y.

Further, since ?,1 — HBA and H is nonsingular, as A runs from 0 to oo, ﬁfl
runs from H™'Y to H! ({(ug,Y)u; + (up,Y)up). And there is

i i =,
"shrinking" enforced on B, in the sense that the quadratic form B, Q)f,

A |12
must be non-increasing in A. (If not, the fact that HY =: YAH Increases

in A would produce a contradiction.)




Eigen decomposition of K and penalization

Now large j (indexing late/small eigenvalues of S)) correspond to
early/large eigenvalues of the smoothing spline penalty matrix K. Letting
u; = uy—j+1 so that

the eigen decomposition of K is
K = U*diag (171,172, . . ., ny) U™
and the criterion

minimize ((Y —v)" (Y —v) + Av'Kv)

veRN

can be written as

minimize ((Y —v) (Y —v) + AV'U*diag (171,172, . .., yn) U*'v)

ve RN
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Eigen decomposition and penalization cont.

This criterion i1s then

._J-\N 2
Ut:}i j:]-

N—2
minimize ((Y —v) (Y=v)+A Y n{u; V>2) (8)

(since yy—1 = yy = 0) and we see that eigenvalues of K function as

penalty coefficients applied to the N orthogonal components of

V= j,:V:l uj‘,v> u: in the choice of optimizing v. From this point of
view, the u; (or u?) provide the natural alternative (to the columns of H)

basis (for ") for representing or approximating Y, and

Y, = (ug, Y)uy + (up, Y)up + Z —u;

provides an explicit form for the optimizing smoothed vector of responses.
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Orthonormal bases and penalization

Here K has a specific meaning derived from the H and () matrices
connected specifically with smoothing splines and the particular values of
x In the training data set. But an interesting possibility brought up by the
development is that of forgetting the origins (from K) of the 17; and u; and
beginning with any interesting/intuitively appealing orthonormal basis
{u;} and set of non-negative penalties {#;} for use in (8). Working
backwards one is then led to a corresponding smoothed vector of
responses and Its "smoothing matrix". Slightly more detail on this line of
argument is provided in Section 5.3.




Equivalent kernels

It I1s worth remarking that since QA = S,Y, the rows of S, provide
weights to be applied to the elements of Y to produce predictions/
smoothed values corresponding to Y. These can for each 1/ be thought of
as defining a corresponding "equivalent kernel" (for an appropriate
"kernel-weighted average" of the training output values). (See Figure 5.8

of HTF in this regard.)




