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f p=2 function optimization problem

If p =2 (with x = (x1, x2)), one might propose to seek

N
A = arg min (Z (vi—h ()f:,-))2 +AJ [h])

functions h with 2 derivatives \ ;—1
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An optimizing ) : R?2 — R can be identified and is called a "thin plate
spline.” As A — 0, f; becomes an interpolator, as A — oo it defines the
OLS plane through the data in 3-space. In general, it can be shown to be
of the form

for
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where g; (x) = 1 (||x — x;||) for 17 (2) = 2% In 2°.
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Radial basis functions and large N

The gi (x) are "radial basis functions" (radially symmetric basis functions)
and fitting is accomplished much as for the p = 1 case. The form (1) is
plugged into the optimization criterion and a discrete penalized least
squares problem emerges (after taking account of some linear constraints
that are required to keep J[fy] < c0). HTF seem to indicate that in order
to keep computations from exploding with N, it usually suffices to replace
the N functions gj (x) in (1) with K < N functions g* (x) = 77 (||jx — x7||)
for K potential input vectors x* placed on a rectangular grid covering the
convex hull of the N training data input vectors X;.




il Large p smoothing spline strategies

For large p, one might simply declare that attention is going to be limited
to predictors of some restricted form, and for h in that restricted class,

seek to optimize
N

Y (vi — h(x:))* +AJ[h]

f=1
for J[h| some appropriate penalty on h intended to regularize/restrict its
wiggling. For example, one might assume that a form
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will be used and set
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] and be led to additive splines.




Large p smoothing spline strategies cont.

Or, one might assume that
P
g(x) =) g (x)+) gk (X x) (2)
=1 .k

and invent an appropriate penalty function. It seems like a sum of 1-D
smoothing spline penalties on the g; and 2-D thin plate spline penalties on
the gj, Is the most obvious starting point. Details of fitting are a bit
murky (though | am sure that they can be found in book on generalized
additive models). Presumably one cycles through the summands in (2)
iteratively fitting functions to sets of residuals defined by the original y;
minus the sums of all other current versions of the components until some
convergence criterion is satisfied. (2) is a kind of "main effects plus
2-factor interactions" decomposition, but it is (at least in theory) possible
to also consider higher order terms in this kind of expansion.




