Penalized N-space Fitting

Stephen Vardeman
Analytics lowa LLC
ISU Statistics and IMSE




Penalized optimization problem

In abstraction of the smoothing spline development, suppose that {u;} is
a set of M < N orthonormal N-vectors, A > 0,17; >0 for j =1,2,..., M,

and consider the optimization problem
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and in this penalty, Ay; is a multiplier of the squared length of the
component of v in the direction of u;.
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Solution to the optimization problem

The optimization criterion is thus
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and it is then easy to see (via simple calculus) that
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From this it's clear how the penalty structure dictates optimally shrinking
the components of the projection of Y onto span{u;}.




“Smoother” matrix and application
Y can be represented in the form SY for
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with U = (uq,uy, ..., uy ). (It's easy to see that S is a rank M matrix for
which Y = SY.)

One context in which this material might find immediate application is
where some set of basis functions { h;} are increasingly "wiggly" with
increasing j and the vectors u; come from applying the Gram-Schmidt
process to the vectors
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In this context, it would be very natural to penalize the later u; more
severely than the early ones.




