Penalized *N*-space Fitting

Stephen Vardeman

Analytics Iowa LLC

ISU Statistics and IMSE

Penalized optimization problem

In abstraction of the smoothing spline development, suppose that $\{\mathbf{u}_j\}$ is a set of $M \leq N$ orthonormal N-vectors, $\lambda \geq 0$, $\eta_j \geq 0$ for $j=1,2,\ldots,M$, and consider the optimization problem

$$\underset{\mathbf{v} \in \text{span}\{\mathbf{u}_j\}}{\text{minimize}} \left((\mathbf{Y} - \mathbf{v})' (\mathbf{Y} - \mathbf{v}) + \lambda \sum_{j=1}^{M} \eta_j \langle \mathbf{u}_j, \mathbf{v} \rangle^2 \right)$$

For $\mathbf{v} = \sum_{j=1}^{M} c_j \mathbf{u}_j \in \operatorname{span}\{\mathbf{u}_j\}$, the penalty is

$$\lambda \sum_{j=1}^{M} \eta_j \langle \mathbf{u}_j, \mathbf{v} \rangle^2 = \lambda \sum_{j=1}^{M} \eta_j c_j^2$$

and in this penalty, $\lambda \eta_j$ is a multiplier of the squared length of the component of \mathbf{v} in the direction of \mathbf{u}_j .

Solution to the optimization problem

The optimization criterion is thus

$$\left(\mathbf{Y} - \mathbf{v}\right)' \left(\mathbf{Y} - \mathbf{v}\right) + \lambda \sum_{j=1}^{M} \eta_{j} \left\langle \mathbf{u}_{j}, \mathbf{v} \right\rangle^{2} = \sum_{j=1}^{M} \left(\left\langle \mathbf{u}_{j}, \mathbf{Y} \right\rangle - c_{j}\right)^{2} + \lambda \sum_{j=1}^{M} \eta_{j} c_{j}^{2}$$

and it is then easy to see (via simple calculus) that

$$c_j^{ ext{opt}} = rac{\langle \mathbf{u}_j, \mathbf{Y}
angle}{1 + \lambda \eta_j}$$

i.e.

$$\hat{\mathbf{Y}} = \mathbf{v}^{\text{opt}} = \sum_{j=1}^{M} \frac{\langle \mathbf{u}_j, \mathbf{Y} \rangle}{1 + \lambda \eta_j} \mathbf{u}_j$$

From this it's clear how the penalty structure dictates optimally shrinking the components of the projection of \mathbf{Y} onto span $\{\mathbf{u}_i\}$.

"Smoother" matrix and application

 $\hat{\mathbf{Y}}$ can be represented in the form \mathbf{SY} for

$$\mathbf{S} = \sum_{j=1}^{M} d_j \mathbf{u}_j \mathbf{u}_j' = \mathbf{U} \mathbf{diag} \left(\frac{1}{1 + \lambda \eta_1}, \dots, \frac{1}{1 + \lambda \eta_M} \right) \mathbf{U}'$$

with $\mathbf{U} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_M)$. (It's easy to see that \mathbf{S} is a rank M matrix for which $\hat{\mathbf{Y}} = \mathbf{SY}$.)

One context in which this material might find immediate application is where some set of basis functions $\{h_j\}$ are increasingly "wiggly" with increasing j and the vectors \mathbf{u}_j come from applying the Gram-Schmidt process to the vectors

$$\mathbf{h}_{j}=\left(h_{j}\left(\mathbf{x}_{1}\right),\ldots,h_{j}\left(\mathbf{x}_{N}\right)\right)^{\prime}$$

In this context, it would be very natural to penalize the later \mathbf{u}_j more severely than the early ones.