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Semi-supervised learning

Consider N complete data cases (x1,y1),..., (Xy,yn) and M > 0
additional data cases where only inputs Xpy.1,..., Xy are available.
There i1s no necessity here that M > 0, but it can be so in the event that
predictions are desired at Xy.1,..., Xy~ Whose values might not be in
the training set. Where there are M > 0 genuine "unlabeled cases" whose
Inputs are assumed to come from the same mechanism as the inputs
X1,...,Xy and might be used to more or less "fill in" the relevant part of
the input space not covered by the complete/labeled data cases, the
terminology semi-supervised learning is sometimes used to describe the
building of a predictor for y at all N + M input vectors. The case M =1
might be used to simply make a single prediction at a single input not
exactly seen in a "usual" training set of N complete data pairs.




Set-up

Suppose that following the development of Section 2.4.3, one can make an
adjacency matrix based on the N + M input vectors,
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and corresponding Laplacian and symmetric normalized Laplacian
matrices, respectively
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Graph-penalized fitting/smoothing

With
YL
Y _ Nx1
(N+M)x1 Yu
M <1

one might wish to produce a vector of smoothed /fitted values Y
(N+M)x1

such that entries corresponding to input vectors with large adjacencies
tend to be alike. This is possible in way highly reminiscent of the material
in Sections 5.1 and 5.3. For v € RN™™ written as

i

v _ N x1

(N+M)x1 Vi

M =1

consider the optimization problem in RN*M

i rr:ignaimiﬁe (YL —v) (YL —v) + AV/Lv) (1)
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Effects of graph-penalized fitting

The developments of Section 2.4.3 show that upon expanding v in terms
of the N + M (orthonormal) eigenvectors of L (or L") it follows that
components of v that are multiples of late eigenvectors (ones with small
eigenvalues)

1. have similar entries for cases with large adjacencies, and
2. are relatively lightly penalized in the minimization.
This strongly suggests that solutions to the optimization problem (1) will

provide smoothed prediction vectors Y where entries with corresponding
Inputs with large adjacencies are similar.




Ryan and Culp results

Recent work of Culp and Ryan provides theory, methods, and software for
solving the problem (1) and many nice generalizations of it (including
consideration of losses other than SEL that produce methods for
classification problems). Here we will provide (only) the explicit solution
that is available for the SEL problem.

It turns out that the problem (1) and generalizations of it separate nicely
Into two parts. That is

Yo =Lty (2)
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(or the same with L*s replacing Ls) where Y| = v, solving

minimize (Y. —vi)' (Yo —vi) + Avi Liv) (3)
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for Ly =L — Ly LL_JILUL (or, again, the same with L™s replacing Ls).




SEL solution

The matrix optimization problem (3) is familiar and its solution a simple
consequence of vector calculus

~ opt

Y, =

= (|—f—xu‘:|_) ¥

This is exactly parallel to the results in Sections 5.1 and 5.3. (I +AEL]_1
(and its starred version) is a smoother/shrinker matrix. (Further, the

matrix —LalLUL in display (2) and its starred version are stochastic
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matrices and entries of Y|, are averages of the elements of Y| .)

Presumably, in an application A can be chosen by cross-validation using

the labeled cases to make a CVMSPE.




