1-Dimensional Kernel and Local Regression
Smoothers

Stephen Vardeman
Analytics lowa LLC
ISU Statistics and IMSE

Basic idea and 1-D kernel smoothing

The basic idea here Is that ?(XD) might weight points in a training set
according to how close they are to xg, do some kind of fitting around xp,
and ultimately read off the value of the fit at xg.

Suppose that x takes values in [0,1]. Make weights for points in the
training set based on a (usually, symmetric about 0) non-negative,
real-valued function D (t) that is non-increasing for t > 0 and
non-decreasing for t < 0. Often D (t) has value 0 unless |[t| < 1. Then,
a (smoothing) kernel function is

Ky (x,x0) = D (X 1”‘“) (1)

A is a "bandwidth" parameter that controls the rate at which weights drop
off as one moves away from xp (and in the case that D (t) = 0 for |t| > 1,

how far one moves away from xy before no weight is assigned).

Common 1-d smoothing kernels

Common choices for 1-dimensional smoothing kernels D are
1. the Epanechnikov quadratic kernel (blue below),
D(t)=32(1—-t2)1]|t] <1],
3
2. the "tri-cube" kernel (black), D (t) = (1 = \t\3) l|t] < 1], and
3. the standard normal density (red), D (t) = ¢ (t).

I Y I

0.0

/

The Nadaraya-Watson kernel smoother

Using weights (1) to make a weighted average of training responses, the
Nadaraya-Watson kernel-weighted prediction at xp is

N ke
Z:’:l K (X[lr X!) Vi (2)

fr(x) =
;Nzl Ka (XOrXf)

This typically smooths training outputs, y;, in a more pleasing way than
does a k-nearest neighbor average. But it has obvious problems at the
ends of the interval [0, 1] and at places in the interior of the interval where
training data are dense to one side of xy and sparse to the other, If the
target E[y|x = z| has non-zero derivative at z = xp. For example, at

xo = 1 only x; < 1 get weight, and if E[y|x = z] is decreasing at

z=1x =1, f (1) will be positively biased. That is, with usual symmetric
kernels, (2) will fail to adequately follow an obvious trend at 0 or 1 (or at
any point between where there is a sharp change in the density of input
values in the training set).

Locally weighted regression

A way to fix this problem with the Nadaraya-Watson predictor is to replace
the locally-fitted constant with a locally-fitted line. That is, at xg one
might choose & (xg) and B (xp) to solve the optimization problem

N
miniTiEeZKA (x0,x7) (yi — (& + Bxi))> (3)
& an .‘-:1

and then employ the prediction

Fa

fr(x0) = a (x0) + B (x0) X0 (4)

/

Explicit form for locally weighted regression

The weighted least squares problem (3) has an explicit solution. Let

1 X1
B — :
N x?2 '
1 xy
and take
W (xo) = diag (K) (x0.x1) ..., Kr (X0, xn))
NxN
then (4) is

A (x0) = (1,x) (B'W (x0) B) "B'W (x0)Y =1 (x)Y (5)

for the 1 x N vector I' (xg) = (1, x0) (B"W (x0) B)_1 B'W (xp). Itis thus
obvious that locally weighted linear regression is (an albeit xp-dependent)
linear operation on the vector of outputs.

fl Kernel smoothing df

Recall that for smoothing splines, smoothed values are
Y,=S,Y
where the parameter A is the penalty weight, and
df (1) = tr (Sy)

We may do something parallel in the present context. We may take

" (x1)
L, = :
e " (xn)
where now the parameter A is the bandwidth, write
Y= LyY

and define

df (1) = tr (Ly)

Kernel smoothers and N-W smoothing

The weights in I’ (xp) combine the original kernel values and the least
squares fitting operation to produce a kind of "equivalent kernel" (for a
Nadaraya-Watson-type weighted average). HTF suggest that matching
degrees of freedom for a smoothing spline and a kernel smoother produces
very similar equivalent kernels, smoothers, and predictions.

There is a famous theorem of Silverman that adds technical credence to
this notion. It says that in some appropriate probabilistic sense the
smoother matrix for cubic spline smoothing has entries like those that
would come from a corresponding kernel smoothing.

fl Silverman theorem

Roughly, the theorem says that for large N, if in the case p = 1 the inputs
X1, X0, ..., xy are iid with density p (x) on |a, b, A is neither too big nor

oo small B) — ;exp (%) sin (\% ' j)
7 (x) = (NPA(XJ)
and

629 = 755057 (3

then for x; not too close to either a or b,

1

(SA)i = 75 Ga (xi, %)

\j In some appropriate probabilistic sense.

Adaptive choice of bandwidth

Many (most?) implementations of locally weighted mean smoothing
(Nadaraya-Watson kernel smoothing) and locally weighted linear
regression do not employ a single bandwidth A across all xg, but rather
make it depend upon xp. The idea iIs to use a large bandwidth where Xx; in
the training set are sparse and small one where they are dense. One way
of doing this is for a variable "span" between 0 and 1 to set

A (xp) = minimum value of A such that at least a fraction span

of the training cases have x; within A of x

(In this context the span serves as a complexity parameter, typically
chosen via cross-validation.)

