Local Regression Smoothing in p Dimensions

Stephen Vardeman
Analytics lowa LLC
ISU Statistics and IMSE




-~

Direct generalization of 1-D local regression

A direct generalization of 1-dimensional kernel smoothing to p dimensions
might go roughly as follows. For D as before, and x € R”, | might set

Ky (x0,x) = D (HX_AXOH) (1)

and fit linear forms locally by choosing a (xg) € R and B (xo) € R”
solving the problem

N
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winimize ) K (x0.%) (v — (o + %)

and predicting as
fi (o) = & (x0) + B’ (Xo) Xo
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Structure assumptions

Kernel smoothing in p dimensions should be done only after standardizing
the coordinates of x, and can be effective as longs as N is not too small
and p is not more than 2 or 3. For p > 3, the curse of dimensionality
comes into play and N points usually just aren't dense enough in p-space
to make direct use of kernel smoothing effective. For the method to be
successful P it will usually need to be applied under appropriate structure
assumptions.

One way to apply additional structure to the p-dimensional kernel
smoothing problem is to essentially reduce input variable dimension by
replacing the kernel (1) with the "structured kernel"

\/(x—xo)"h(x—x())
A

Kya (X0, x) =D

for an appropriate non-negative definite matrix A.
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Structure assumptions cont.

For the eigen decomposition of
A = VDV’

write
(x —x0) A (x —xg) = (D%V" (x—xo))! (D%V‘r (x — x{)))

This replaces use of x and RP distance from x to xp to define weights,
with D%V"x and R? distance from D%V"x to D%V"x(}. When some entries
of D are 0 (or are nearly so), one basically reduces dimension from p to
the number of large eigenvalues of A and defines weights in a space of
that dimension (spanned by eigenvectors corresponding to non-zero
eigenvalues) where the curse of dimensionality may not preclude effective
use of kernel smoothing. "The trick" Is, of course, identifying the right
directions into which to project. (Searching for such directions is part of
the Friedman "projection pursuit" idea.)




