Structured Regression Functions

Stephen Vardeman
Analytics lowa LLC
ISU Statistics and IMSE




Structure assumptions and smoothing

There are several ways that have been suggested for making use of fairly
low-dimensional (and thus, potentially effective) smoothing in large p
problems. One of them is the "structured kernels" idea. Another
concerns using various kinds of structured regression functions.

For example, one might assume additivity in a form
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and try to do fitting of the p functions g; and constant .
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Additive models and “backfitting”

One more or less ad hoc method of fitting additive forms is the so-called
"back-fitting algorithm." That is to (generalize form (1) slightly and) fit
(under SEL)
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for x' some part of x, one might set @ = % Z:-v:l y;, and then cycle
through 1 =1,2,..., [,1,2,... by:




Backfitting algorithm

1. fitting via some appropriate (often linear) operation (e.g., spline or
kernel smoothing)
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where the g, are the current versions of the fitted summands,




Backfitting algorithm cont.

2. setting

g; = the newly fitted version

— the sample mean of this newly fitted version across all xﬁ

(in theory this is not necessary, but it is here to prevent numerical/

round-off errors from causing the g,, to drift up and down by additive
constants summing to 0 across m), and

3. iterating until convergence to, say, ?(x),




-~

Simultaneous fitting of additive terms

A more principled SEL fitting methodology for additive forms like that in
display (2) (e.g. implemented by Wood in his mgcf R package) is the
simultaneous fitting of a and all the functions g; via penalized least
squares. [hat is, using an appropriate set of basis functions for smooth
functions of x' (often a tensor product basis in the event that the
dimension of x' is more than 1) each g; might be represented as a linear
combination of those basis functions. Then form (2) is in fact a constant
plus a linear combination of basis functions. So upon adopting a
quadratic penalty for the coefficients, one has a kind of ridge regression
problem and explicit forms for all fitted coefficients and &. The practical
details of making the various bases and picking ridge parameters, etc. are
not trivial, but the basic idea is clear.




Scope of additive modeling

The simplest version of this line of development, based on form (1), might
be termed fitting of a "main effects model." But the approach might as
well be applied to fit a "main effects and two factor interactions model,"
using some gjs that are functions of only one coordinate of x and others
that depend upon only two coordinates of the input vector. One may mix
types of predictors (continuous, categorical) and types of functions of
them in the additive form to produce all sorts of interesting models
(including semi-parametric ones and ones with low order interactions).
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Other structured regression forms

Another possibility for introducing structure assumptions and making use
of low-dimensional smoothing in a large p situation, is by making strong
global assumptions on the forms of the influence of some input variables
on the output, but allowing parameters of those forms to vary in a flexible
fashion with the values of some small number of coordinates of x. For
sake of example, suppose that p = 4. One might consider predictor forms

f (x) = (>g;%6) + B1(xg,00) i + Bo (x3,%) 20

That is, one might assume that for fixed (x3, x4 ), the form of the predictor
is linear in (x1, xo), but that the coefficients of that form may change in a
flexible way with (x3,xs). Fitting might then be approached by locally
weighted least squares, with only (x3, x4 ) involved in the setting of the
weights.




Other structured regression forms cont.
That is, one might for each (x39, xa0), let
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¥i = a (x30, Xa0) + B1 (x30, xa0) x1; + B2 (X30, Xa0) X0;

minimize over choices of & (x30, xa0) , B1 (x30, xa0) and B2 (x30, xa0) the
weighted sum of squares

N
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1
and then employ the predictor
f (x0) = & (x30, xa0) + B1 (x30, Xa0) X10 + P2 (30, Xa0) X20

This device keeps the dimension of the space where one iIs doing
smoothing small. But note that nothing here does any thresholding or
automatic variable selection.




