Neural Network Fitting

Stephen Vardeman
Analytics lowa LLC
ISU Statistics and IMSE

Back-propagation and partials of the k-th output

The most common fitting algorithm for neural networks is the
"back-propagation algorithm" or the "delta rule." It is simply a gradient
descent algorithm for the entire set of weights involved in making the
outputs (in the toy example used in these slides the as and fs). Rather
than completely detail such an algorithm for even the toy example, we will

here only lay out the heart of what is needed.

For a training set of size N, loss L (f (%;),y;) incurred for input case i
when the K predictions f, (x;) are made (corresponding to the K output
nodes), and where the sum of such losses is to be minimized, if one can
find the partial derivatives of the coordinates of f (x) with respect to the
weights the chain rule will give the partials of the total loss and allow
iterative search in the direction of a negative gradient of the total loss. So
we begin with description of how to find partials for f (x), a coordinate of
the fitted output vector.

-~

Notation
Consider a neural network with layers of hidden nodes indexed by
h=1,2,..., H beginning with the layer immmediately before the output

layer and proceeding (right to left in a diagram like the one used as an
example) to the one that is built from linear combinations of the
coordinates of x. Use the notation my, for the number of nodes in layer h,
including a node representing the "bias" input 1 (represented by xp = 1
and zp = 1 in the toy example). For a real-valued activation function of a
single real variable o, define a vector-valued function o, : R — R" by

ﬂ-m(ULUQ ----- U_.”) :({T(Ul),O'(Ug),...,(?'(um))

To reduce notational clutter, we will abuse notation somewhat and not
subscript ¢ ,,, but rather write only o, leaving it to the reader to recall
that o outputs vectors of the same dimension as its argument. And it will
be convenient to presume that both the input and output of a ¢ are row
vectors.

I

-~

Values produced at hidden nodes

For A" a (p+1) x (my — 1) matrix of (weight) parameters, the
relationship between the input x and vector of values (say zy) in the last

2y = (1, o ((Lx") AH))

Next, for A7~ an my X (my—1 — 1) matrix of parameters the relationship
between the vectors of values in the last and next to last hidden layers is

Ziy o = (l,cr (ZLAH_l))

and so on to the h — 1 case of (Ah an mp1 X (my — 1) matrix of

parameters)
z;, = (L‘T (ZLHAh))

hidden layer is

p
Forward and backward passes

Then for A’ an m; x K matrix of parameters and g, a function of K real
variables, the kth coordinate of the output is

gk (2, A%)

This series of relationships allows (via what is known as a "forward pass"
through them) the computation of zs and predictions for a fixed set of
coefficients collected in the As and an input vector x.

Then partial derivatives of the kth coordinate of the response (at that
input and set of coefficients) can be found via the "backward pass" based
on the K partials of gy, the derivative of ¢, the recursions above, and the
results of the forward pass. We illustrate this next.

-~

U

A partial of a response wrt a weight

dy R d
% _ 5l (10 (1)) %) 2 (1. (8%)) A9),
if

if =1

- Y E (1o (A1) AY) 7 (1.0 (A1) A)

i | aj

. K
g ((Lo(zA"))A") Y 4,
k=1

0

1
?Jaij-

(Lo (A7),

d

= | aay

K
=Y & (1.0 (BA"))A°) o' (Z5A})
/=1

:
3

=Y & (Lo (AY)) A%) a)=—0 (25A})

1

"And so on" for other yis and ag-s.

-~

Backward pass for partials in general

In general one is faced with the functional form for the kth coordinate of
the output made by successive compositions using the activation function
and linear combinations with coefficients in the matrices Ah, from which

ey

partials Li are obtainable in the style above, by repeatedly using the
oo o
if

chain rule. No doubt some appropriate use of vector calculus and
corresponding notation could improve the looks of these expressions and
recursions can be developed, but what is needed should be clear. Further,

In some contexts numerical approximation of these partials may be the
most direct and efficient means of obtaining them.

-~

Partials of the loss
Then for loss L (?y) let

o)
o7,

Le (f.y) = —=L(f.y)

For a an element of one of the A" matrices, the partial derivative of the
contribution of case / to a total loss with respect to it is

8
Z Li (F t (), yi) 548k (23 (xi) AO)

(for z1 (x;) the set of values from the final hidden nodes and partials found
as above) and the partial derivative of the total loss with respect to it is

N K)

D (a) = Z Lk (? (X;) ,_}/,') Egk (Zfl (X;) AU)

Gradient descent

The gradient of the total loss as a function of the matrices of weights then
has entries D (a) and an iterative search to optimize total loss with a
current set of iterates a.,rent Can produce new iterates

dnew — dcurrent — '}’D (acurrent)

for some "learning rate" ¢ > 0.

Losses and “stochastic” gradient descent

Of course, in SEL /univariate regression contexts, it is common to have

K =1 and take L (?,y) — (? —y)z. In K-class classification models, it
Is most common to use K-dimensional output

&= (g (Z%AO) gK (z’iAU)) (with the "softmax" gi) and to employ
the cross-entropy loss

K

L(gy)=—)_ Ily=kIngk(x)
k=i

There are several possibilities for regularizing the ill-posed fitting problem
for neural nets. One possibility is to employ "stochastic gradient descent"
and newly choose a random subset of the training set for use at each
iteration of fitting. (In this regard, it is popular to even go so far as to
employ only a single case at each iteration.)

