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fl Image classification

A popular application of neural network ideas is that of image
classification. Not surprisingly, success in this realm seems to rely as
much upon ideas from image processing as upon ideas from prediction.

A grey-scale image is typically represented by an L x M matrix X = |x,,]
where each xj,, € {O, , I 254 255} represents a brightness at location

(1, m). A color image is often represented by 3 matrices X' = [x,],
LxM

X = [x;m], and X = [x;,,] (again all with entries in

T, [ ;’m] % M [ J'm] ( g

{O, 1,2 . 2h4. 255}) representing intensities in red, green, and blue

"channels." The standard machine learning problem is to produce a

classifier (based on a training set of N images X; or {Xr, Xg,Xb} with

!

corresponding class identities y; € {1, Poic w5 K}) (For example, a
standard test problem is "automatic" recognition of hand-written digits O

| through 9.)
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Generalities

Simple convolutional neural networks with H hidden layers and a softmax
output layer are successive compositions of linear and non-linear operations
that might be represented as follows. For ¢ operating on X using some
set of real number parameters A" to produce some multivariate output
(we describe below some kinds of things that are popularly used) a
"deepest layer" of the convolutional neural net produces

2" = oM (X, A") (4)

Then applying another set of operations ¢/’~! to the result (4) using some
set of parameters A"71 the next layer of values in the convolutional
neural net is produced as

g H—1 _ H-1 (ZH AH—I)
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Generalities cont.

This continues, with

y L (thT Ah) (5)

torh=H H=1..... 1 where ¢! is R -valued (the top layer of hidden
values is a K-vector).

Then, with g the softmax function the output K-vector of class
probabilities Is

1
g (Z')
In multi-channel cases, It seems common to develop separate series of

compositions based on X", X2, and X" and to bring them together only in
the top or top few levels of this kind of hierarchy.
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Variants

Variants of this basic structure are possible and have been used. For
example, it is sometimes done to make a "direct connection" between layer
h and one deeper than layer h+1. That is the option to employ a form

i - o (Zh+1 Zh+i Ah)
for some j > 1 or even a form
Zﬁ _ U_h (Zh—l X Ah)

making a direct connection to the input layer is sometimes employed.
(Obviously, even more complicated schemes are possible.)
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Convolutional layers: linear filtering

Most of what we have said thus far in this section is not really special to
the problem of image classification (and could serve as a high-level
introduction to general neural net predictors). What sets the
"convolutional” neural network field apart from "generic" neural network
practice Is the image-processing-inspired forms employed in the functions
. The most fundamental form is one that applies "linear filters" to
iImages followed by some nonlinear operation. This creates what is
commonly called a "convolution" layer.

To make the idea of a convolutional layer precise, consider the following.
Let F be an R x C matrix (that might be called a linear filter matrix).

Typically this matrix is much smaller than the image and square (at least
when "horizontal" and "vertical" resolutions in the images are the same),

and R and C are often odd.
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Linear filtering/convolution

One can then make from F and X a new matrix F & X of dimension
(L—R+1)x (M— C+1) with entries

R €
(F'?X'X);j - Z Z fabX(i+a—1),(j+b-1) (6)
a=1 b=1

A natural way to think about this operation is to align an R X C integer
grid with values in F on the grid points with a (larger) corresponding grid
for the image X, setting the upper left (1, 1) corner of the F grid at the
(i,J) location on the X grid, and to then sum products of aligned matrix
entries. The entries of F serve as weights on the values in the R x C part
of the image aligned with the filter matrix. The next figure illustrates this
process for a simple case where F is 3 x 3 (and so ultimately F & X has 2
fewer columns and 2 fewer rows than X and is thus (L —2) x (M — 2)).




Convolution
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Introducing non-linearity

This convolution operation is linear and it Is typical practice to introduce
non-linearity by following convolution operations in a layer with the hinge
function max (u,0) applied to each element u of the resulting matrix.
Sometimes people (apparently wishing to not lose rows and columns in the
convolution process) "0 pad" an image with extra rows and columns of Os
before doing the convolution—a practice that strikes this author as lacking
sound rationale.
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Types of filter matrices

Multiple convolutions are typically created in a single convolution layer.
Sometimes the filter matrices are filled with parameters to be determined
in fitting (i.e. are part of A" in the representation (5)). But they can also
be fixed matrices created for specific purposes. For example the 3 x 3

matrices
1 & 1 | i T 9
gt | D B D and Sheriz — 0 0 0
1 0 1 8§ -5 5

are respectively the vertical and horizontal Sobel filter matrices, commonly
used Iin image processing when searching for edges of objects or regions.
And various "blurring" filters (ordinary arithmetic averaging across a
square of pixels and weighted averaging done according to values of a
Gaussian density set at the center of an integer grid) are common devices
meant to suppress noise.




Dimension reduction: sampling

As multiple layers each with multiple new convolutions are created, there
is potential explosion of the total dimensionality of the sets of Z" and A",
Two devices for controlling that explosion are the notions of sampling and
pooling to reduce the size of a Z. First, instead of creating and
subsequently using an entire filtered image F @ X, one can use only every
sth row and column. In such a "sampling" operation s is colloquially
known as the "stride." Roughly speaking, this reduces the size of a Z by a
factor of s°.
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Dimension reduction: pooling

Another possibility is to choose some block size, say s X t, and divide an

Image into roughly
L M
S E

non-overlapping blocks, within a block applying a "pooling" rule like
"simple averaging" or "maximum value." One then uses the rectangular
array of these pooled values as a layer output. This, of course, reduces

the size of a Z by a factor of roughly st.

It seems common to apply one of these ideas after each one or few
convolution layers in a network, and especially before reaching the top and
final one or few layers. The final hidden layers of a convolutional neural
net are of the "ordinary" type described earlier and if the dimensionality of
their inputs are too large, numerical and fitting problems will typically
ensue.




