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Nonlinear Maps and Function Spaces

Often, what P encodes about a relationship between x and y is very
complicated and "non-linear." Standard (and almost all tractable)
mathematics relies on "linear" operations: additions of vectors,
multiplication of vectors by scalars, inner products (and associated norms
and distances), etc. "Ordinary" creation of features can be thought of as
a way to map a feature space R” (non-linearly) to a higher-dimensional
(Euclidean and therefore linear) feature space /9. But that can be
ineffective because g large enough to allow for good prediction based on
linear operations is so large as to make an appropriate transform

T : RP — RY9 impossible to identify and/or use.

A very clever and practically powerful development in machine learning has
been the realization that for some purposes, it is not necessary to map
from 1P to a Euclidean space, but that mapping to a linear space of
functions may be helpful.
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Mapping to predictors from function spaces

If .4 is an abstract feature space of functions (that is an inner product
space) one might think of mapping

TiR?— A

and using linear operations and relationships in .4 to make (relationships
and/or) predictors based on as in .4 (and then defining corresponding ones
for xs in R” by simply applying T to xs of interest to make as and
corresponding predictions). After all, functions are really just
high-dimensional vectors, and if transforming R° — R with p < g is
often useful, so also might be transforming R — A.

This line of argument has especially been taken advantage of through the
use of so-called "kernel functions." (Be careful. There are many different
usages of the word "kernel" in the machine learning world.)




Non-negative definite functions

Suppose that a symmetric function K (X, z) with domain R x R” is
non-negative definite in the sense that for any training set T the
(symmetric) N x N so-called Gram matrix

Is non-negative definite. Then the space of functions that are finite linear
combinations of "slices" of K (x, z), i.e. functions of x of the form

M
Z CJ,}‘\ (X, ZJ;)
J=1

for M > 0 real numbers ¢y, o, ..., cv, and elements z1, 2o, ..., zZy of RP
form a linear space. Call it .A.




fl Matched inner product for a kernel space

It is possible to define a very convenient inner product on .4 starting from

(K (-vz1) K (-, 22)) 4 = K (21.23)

This relationship and the bilinearity of any inner product of necessity imply

that
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(non-negative definite) M x M matrix with entries K (z;, z;). The special
case of ¢ = ¢; = ¢y further provides the simple form
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Distance in the function space and terminology

Of course, since K defines the inner product in .4 it also defines the
distance between Zf‘il c1;K (-, z;) and Zjil ik, ;)

M M
d_,,gll (Z Clj}( (', Zj) : Z CQJK (-1 Zj)) = \/(Cl — CQ)! K (Cl = Cg)
=1 J=1

(with ¢, €, and K as on the previous slide).

Here K serves as a reproducing kernel. [t both defines the linear space
of functions of interest and provides the inner product for the space.
Under some conditions, the space .4 (whose elements are functions

RP — R) can be extended to include /imits of finite linear combinations of
slices of the kernel function K (-, +) and the resulting construct is termed a

Reproducing Kernel (Hilbert) Space (RKHS) of functions.




Standard transform to the function space

The (standard non-linear) transform T : RP — A is defined by

(remember here that T (x) () is a function of "-"). The inner product in
A of two images of elements of R” is

(T(x). T(2))a=K(x12)

and for a training set with inputs Xy, Xs, ..., Xy the span of

gaas




(Gaussian kernels

Probably the most used kernel function in machine learning is the
"Gaussian kernel"

K (x2) =exp (7 x—2|”)

that produces
2
T(x)(-) = exp (= lx =)

that are radially symmetric p-variate Normal density functions located at
X. The function space .4 consists of linear combinations of such functions

(and limits of them) and the abstract inner product of T (x) and T (z) is

o (~1l—2F)




Other kernels

One can give up requiring that the domain of a kernel function K (x,z) is
a subset of P x RP, replacing it with arbitrary A X X" and requiring only
that the Gram matrix be non-negative definite for any set of {x;}"_;,

X; € X. ltisin this context that the "string kernels" of "text processing"
can be called "kernels" and the balance of Section 1.4.3 of Notes |V
details ways of making kernels.




