Boosting: AdaBoost.M1

Stephen Vardeman
Analytics lowa LLC
ISU Statistics and IMSE




AdaBoost.M1 as usually described

Consider a 2-class 0-1 loss classification problem with the —1-1 coding.
That is, suppose that output y takes values in G ={—1,1}. Let form f
stand for a single-split classification tree (i.e. possessing just 2 final
nodes). We consider how to build an empirically optimal voting function
using a linear combination of such "stumps." In the standard exposition
of this methodology, the stumps are thought of as chosen to individually
optimize training error rate for newly reweighted versions of the training
set and the coefficients applied in making linear combinations of them are
related to the weights applied to the training set.




First iteration
The AdaBoost.M1 algorithm proceeds as follows.
1. Initialize weights on the training data (x;, y;) at

1 .
w;lzﬁ for F =12 . s N

2. Fit a G-valued "stump" classifier g; to the training data to optimize

N
Y 1y # g (x)]
=
let
1 N
€rrp — ﬁ Z / [.Vf 7& g1 (X;”
=1

1 — &y
11’1:“1 —
erry

and define




Weight updates and iteration

3. Set new weights on the training data
1
Wiy — Nexp(a’l! ¥ =& (%:)]) fori=1,2,...,N

(This up-weights mis-classified observations by a factor of
(1— &) /€rFy ).)
4. For m—=2.3 .::. M

a. Fit a G-valued predictor/classifier g, to the training data to optimize

N
Z Wim [}/f ~g (X;)}
i—=1

b. Let i |
s — Z;‘:l Win, | LV;' = &m ()(,')]
m —
Z}le Wim

c. and set
&m = In ((1 _ﬁm) /ﬁm)




[teration and final voting function/classifier
d. Update weights as

Wf{m—i—l) — Wim €Xp (ﬁ:ml [}/;' 7£ Em (X,)])

— Wim (I [yf — &m (X;‘)] e [ [ / % Em (’Q”)
err,
for i =1,2,..., N. (This up-weights mis-classified observations by a

factor of (1 —err,,) /&rr,,).)

5. Output a resulting classifier that is based on "weighted voting" by the
classifiers g, as

?M (X = Slgﬂ (Z XmEm X))

m=1

(Classifiers with small err,,, get big positive weights in the "voting.")




-~

A toy example
Below is a graphic of a small (N = 16) fake p = 2 data set and (single
line) boundaries of M = 7 successive "stumps" used to develop an
AdaBoost.M1 classifier with O training error rate. (Arrows point in the

direction of y = +1 decisions.)

#4 #1
— —-
#3
_b.
#7
-
o
T — @ | e = ¢#5
L4
] e A6
& ® 3 ?
I I . #2
L
— - = ® 4
| I | I
1 2 3 4
X1




Toy example cont’d.

The first cut leaves 2 (red) cases with y = 1 on the wrong side of an

M = 1 decision boundary. The first classifier thus has error rate

erry = 2/16 and a1 = In((7/8) / (1/8)) = In (7). The two points on
the wrong side of the decision boundary are up-weighted by a factor of 7
In seeking the next stump. One operates as If there are 14 +7 +7 = 28
cases (7 at each of the x; that are misclassified at the first cut) in
choosing it. This leads to the #2 (horizontal line) decision boundary.
And so on. At every iteration m, cases misclassified by the new stump are
up-weighted (producing a new total weight). Ultimately, (—1/1 valued)
stump classifiers ?m are combined via

M
Z XmEm (X)

m=1

to make the voting function. E.g., the first two terms of this are
In (7)sign(x; — 2.95) and In (6)sign(x, — 1.85).




Toy example cont’d.

Below are graphics portraying the 5 different classifiers met in the
development of the 0 training error rate M = 7 AdaBoostM.1 classifier.




AdaBoost.M1 and general boosting

There is an argument in Section 11.4.4 of the notes that shows that, in
fact, the AdaBoost.M1 algorithm i1s a general boosting algorithm for
development of a voting function based on the exponential loss and choice
of exactly-optimal-stump-updates of iterates. It is thus not surprising that
AdaBoost.M1 has been called a "best existing off-the-shelf technology" for
2-class classification. Of course it is. |t is adequately flexible to
approximate an optimal voting function (half a likelihood ratio) to the
precision provided by the training data, and its successive approximation
character pushes iterates in exactly that direction.




