Quinlan’s Cubist and “Divide and Conquer”

Strategies

Stephen Vardeman
Analytics lowa LLC
ISU Statistics and IMSE

Quinlan, cubist and C5.0

There is a line of algorithms associated with Ross Quinlan (including
"Cubist" for SEL prediction and "C5.0" for classification). His company
web site Is https://www.rulequest.com/index.html. His algorithms
are very complicated, and complete descriptions do not seem to be
publicly available. (Though there are open source versions of some of his
algorithms, much of his work seems to be proprietary and commercial
versions of his software are no doubt more reliable than the open source
versions.) Textbook descriptions of his methods are generally vague.
Probably the best ones | know of are in the KJ book.

Basic notions

The basic notion of Cubist seems to be partition an input space, R, into
rectangles and fit a (different) linear predictor for y in each rectangle.
Consider the rectangle

R=1{x| a1 <x < by,a0 < < bp,..., ap < oy < by }

where a; and b; can be finite or infinite. Where at least one of a; or b; is
finite, a split has been made on coordinate ;. Jargon typically used in
describing these methods is that if one lists only rectangles where one or
both of the a; or b; are finite, one has specified a "rule."

There are many implementation choices (the consequences of which are
not transparent) that (much as with MARS) amount to a kind of "special
sauce" owned by Quinlan and/or others who have followed him. Vague
expositions of Cubist leave most users to treat SEL prediction based on it
as a mysterious (albeit often effective) "black box."

-~

Some things that can be said

Here are a few observations based on available information on Cubist for
SEL prediction.

1. Trees of regressions (not trees constant inside each final rectangle)
are at the heart of the methodology, both generating rectangles and
making predictions. The "error" used to guide node splitting seems

to be i
er=Y (Nf) v/ MSE,

/

where [indexes rectangles, N, is the number of cases with x; € R, and
MSE; is presumably from an OLS fit (of some linear model) in R;.

2. Exactly what inputs x; are used in each rectangle and how they are
chosen is not clear. Output for an R implementation of Cubist lists

different sets for the various rectangles.

Some more things

3. Exactly how to go from tree-building to the final set of
rules/rectangles is not clear. Software seems to not allow control of
this. Perhaps there is some kind of combining of final rectangles

from a tree.

4. Some sort of "smoothing" is involved. This seems to be some
averaging of regressions for bigger (containing) rectangles "up the
tree branch" from a final rectangle. What this should mean is not
absolutely clear if all one has is a set of "rules," particularly if there
are cuts less extreme than a final pair defining R that have been
eliminated from description of R;. For example, "3 < x; < 5" is the
same as "3 < x3 < 10 and 3 < x; < 5". Further, the form of
weights used in the averaging seems completely ad hoc.

-~

Cubist options

There are two serious modifications of the basic "tree of regressions”
notion included in the R implementation of Cubist.

1. One may employ "committees." This seems to be boosting or
something like it applied using the basic algorithm to create the
corrections to successive versions of an approximate E|y|x].

2. One may employ "instances." This seems to be (optionally) applied

after the boosting. It is shrinkage of ys in light of y;s for k-nearest
neighbors, using weights depending upon the distances from x to the
neighbors. For k cases closest to X, say cases i, 2, ..., I, and
corresponding weights wy, wo, . . ., wi (summing to 17) the prediction
used for input x seems from KJ to be

y (x) JVZ Wi (yr} _j’f;)

Divide and conquer

The "tree of regressions" basis of Cubist is motivated by the reality that in
big problems, simple predictor forms can make sense only "locally." A
sensible strategy in the face of that reality is to attempt to carve up an
Input space into pieces within each of which relatively simple prediction
methods might be used. Cubist is built on using tress (based on
regressions) to do the carving and linear predictors in the pieces. One

might term it one of many possible "divide and conquer" prediction
strategies.

