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A way to make a kernel

A direct way of producing a kernel function is through a Euclidean inner
product of vectors of "features." That is, if ¢ : X' — R (so that

component j of ¢, ¢;, maps X' to a univariate real feature) then

K(st)=(¢(s) ¢(t))

Is a kernel function.

Further, it is easy to make new kernels from existing one ones. Section
6.2 of the book Pattern Recognition and Machine Learning by provides
Bishop a number of useful tools for doing so.
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Facts from Bishop's Section 6.2

For ¢ > 0,K1(-,-) and K5 (-, ) kernel functions on X' x X, g ()
arbitrary, g (-) a polynomial with non-negative coefficients, ¢ : X — R,
K3 (-, -) a kernel on R™ x R™, and M a non-negative definite matrix, all
of the following are kernel functions:

K(s,t)=K3(¢(s),¢(t)) on X x X, and
K (s t) =sMton R"” x R".

1. K(s,t) =cKi(s,t)on X x X,

2. K(s,t) =g(s)K1(s,t)g(t) on X x X,
3. K(s, t) =q(K;4 (s,t)) on X x X,

4. K (s, t) =exp(Kq(s,t)) on X x X,

5: Kafsit) =K 5t)+}(g(5t)on/‘(><é1’
6. K(s,t) =K1 (s, t)Ky(s,t)on X x X,
£

8.




More facts from Bishop and an example

(Fact 7 generalizes the basic insight on the opening slide). Further, if
X CXaxApand K (-, ) is a kernel on X4 X X4 and Kp (-,-) is a
kernel on Xg x A'g, then the following are both kernel functions:

9. K ((SA, SB) . (t,q, tB)) — }\A (SA, tA) N KB (SthB) on X x X, and
10. K ((sa,s8).(ta,ts)) =K4 (54, ta) Ki (sg. tg) on X x X.

An example of a kernel on a somewhat abstract (but finite) space is this.
For a finite set .4 consider X = 24 the set of all subsets of 4. A kernel

on A X X can then be defined by

K (A, Ay) = oMMl for A C A and Ay C A
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Basic kernels from characteristic functions

There are several probabilistic and statistical arguments that can lead to
basic forms for kernel functions. A useful fact from probability theory
(Bochner's Theorem) says that characteristic functions for p-dimensional
distributions are non-negative definite complex-valued functions of s € R”.
So if i (s) is a real-valued characteristic function, then

K(s,t)=¢(s—t)

is a kernel function on R” x RP. Related to this line of thinking are lists
of standard characteristic functions (that in turn produce kernel functions)
and theorems about conditions sufficient to guarantee that a real-valued
function is a characteristic function.




1-D characteristic functions

Each of the following is a real characteristic function for a univariate
random variable (that can lead to a kernel on Rt x R1):

1. P (t) = cosat for some a > 0,
sin at
2. Plt)=
(1) =

3. ¢ (t) = exp (—at?) for some a > 0, and
4. P (t) =exp(—alt|) for some a > 0.

for some a > 0,

And one theorem about sufficient conditions for a real-valued function on
R! to be a characteristic function says that if g is symmetric

(g(—t) =g (t)), £(0) =1, and g is decreasing and convex on |0, o),
then g is the characteristic function of some distribution on R!. (See
Chung page 191.)
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Kernels from average products of likelihoods

For a parametric probaility model on X, consider densities p (x|0) that
when treated as functions of 8 are likelihood functions (for various possible
observed x). Then for a distribution G for 8 € O,

K(s.t) = [ p(s/8) p(t[8) dG (8)

is a kernel. This is the inner product in Ly (G) of the two likelihood
functions. In this space, the distance between the functions (of 8) p(s|0)
and p (t|0) is

/[ (p(s18) - p(16))? G (o)

and what is going on here is the implicit use of (infinite-dimensional)
features that are likelihood functions for the "observations" x.
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Kernels from average log-likelihoods

Once one starts down this path, other possibilities come to mind. One is
to replace likelihoods with loglikelihoods and consider the issue of
"centering" and even "standardization." That is, one might define a
feature (a function of 6) corresponding to x as

4. (6) =Inp (x18) or ¢} (8) =Inp(x|e) — [ Inp(x|6) dG (6)
_ Inp (x|0) — [Inp(x|0)dG (6)
\/f (Inp (x8) — [ Inp(x|6) dG (6))” dG (6)

Then obviously, the corresponding kernel functions are

or even ¢, (0)

K(s.t) = [ ¢:(0)4n(0)dG (6) or K'(s.t) = [ ¢4 (6) ¢ (6) dG ()
or K" (s,) = [ 4 (6) ¢ (6) 4G (6)




Kernels from average log-likelihoods (cont.)

Of these three possibilities, centering alone is probably the most natural
from a statistical point of view. It is the "shape" of a loglikelihood that is
Important in statistical context, not its absolute level. Two loglikelihoods
that differ by a constant are equivalent for most statistical purposes.
Centering lines up perfectly two loglikelihoods that differ by a constant.
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“Fisher Kernels” from Score Functions

In a regular statistical model for x with parameter vector
0= (G403, : i 0¢ ), the k x k Fisher information matrix, say / (8), is
non-negative definite. Then with score function

Valnp (x]|0) = (ilnp(x\ﬂ) ..... iInp(xﬂ))
k
(for any fixed 0) the function
Ko (s.t) = Valnp(s|6)' (1(6)) " Vginp(t[6)

has been called the "Fisher kernel" in the machine learning literature.
Ko (x,x) is essentially the score test statistic for a point null hypothesis
about 6. The implicit feature here is the k-dimensional score function
(evaluated at some fixed 0, a basis for testing about 8), and the norm

ullp = \/u" (1 (9))_1 u is implicitly in force for judging the size of
differences in features.




