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Voting functions and corresponding classifiers

Empirical search for a good 2-class classifier is essentially search for a good
approximation to the likelihood ratio function £ (x). This suggests
another kind of consideration for 2-class problems, namely focusing on the
building of a good "voting function" g (+) to underlie a classifier.

It's now convenient to employ the —1-1 coding of class labels (use
G ={—1,1}) and to without much loss of generality consider classifiers
defined for an arbitrary voting function g (x) by

f(x) =sign(g (x))

(except for the possibility that g (x) = 0, that typically has O probability
for both classes). Then an optimal voting function for 0-1 loss is

p(x]1) Ply=-1]
p(x{|—1) Ply=1]

g% (x) =
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Representation of 0-1 loss error rate

With this notation, a classifier f (x) =sign(g (X)) produces loss neatly
written as

L(y,y)=1]yg (x) <0

(a loss of 1 is incurred when y and g (x) have opposite signs). So the 0-1
loss expected loss/error rate has the useful representation

E/[yg (x) <0

We have seen that a function g optimizing the above is g°P' (x) defined in
on the last slide. But the indicator function / [u < 0] involved in the error
rate is discontinuous (and thus non-differentiable). For some purposes it
would be more convenient to work with a continuous (even differentiable)
one in making an empirical choice of voting function.




Bounds on 0-1 loss error rate
If h(u) > /[u < 0], it is obvious that

E/lyg (x) < 0] <Eh(yg (x))

So Eh (yg (x)) functions as an upper bound for the 0-1 loss error rate and
an approximate (data-based) minimizer of it used as a voting function can
be expected to control O-1 loss error rate. Several different continuous
choices of "loss" h(u) can be viewed as motivating popular methods of
(voting function and) classifier development. These include:

1. h(u) =In(1+exp(—u))/In(2) associated with use of logistic
regression-based estimated conditional class probabilities to make
voting functions,

2. h(u) = exp (—u) associated with the "AdaBoost" algorithm, and

3. h(u) = (1 — u)_ associated with "support vector machines."




Example h functions

For sake of concreteness, below is a plot of / [u < 0] and the three
functions h (u) dominating it discussed on the previous slide.
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Figure: "Losses" | [u < 0] in black, hy (u) in red, hy (u) in blue, and h3 (u) in
green.
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Optimizers for standard choices of h

Not only does Eh(yg (x)) bound the error rate, but minimizers of

Eh (yg (x)) over choice of function g (x) for standard choices of h with

| [u < 0] < h(u) prove to be directly related to the likelihood ratio. Case
1. on the previous slide has optimizing function

Ply = 1|x]
Pb—1ﬂ>

g (x)=1In (

and case 2. has an optimizer that is 1/2 of this. Both are monotone
transformations of the likelihood ratio and when used as a voting function
produce a (0-1 loss) optimal classifier. In case 3. an optimizing function is

g (x) =sign(Ply =1[x] — Py = —1[x])

the optimal classifier itself. So empirical search for optimizers of (an
empirical version of) Eh (yg (x)) can produce good classifiers.




