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Linear classification generalities

Suppose y takes values in ¢ ={1,2,..., K}, or equivalently that y is a
K-variate set of indicators, y, = I [y = k|. We consider methods of
producing prediction/classification rules f (x) taking values in § (and

mostly ones) that have sets {x c f]?p\? (%) = k} with boundaries that are

defined (at least piece-wise) by linear equalities

X8 = (1)

We consider several means of choosing those boundaries. The first two of
these have classical "statistical" origins (linear discriminant analysis and
logistic regression). Then we consider ones that have geometric origins
(notions of separating hyperplanes and "support vector" classifiers).
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Common Sigma class-conditional models

Suppose that for (x,y) ~ P, 7ty = P |y = k| and the conditional
distribution of x on R” given that y = k is MVN,, (z,,X), i.e. the
conditional pdf is

M| =

gk (x) = (271) "% (det ) M2 exp (— (x—p,) T (x— m))

For future reference, note that under these assumptions
n (Elz=H)
Ply = Ix]
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Optimal decision boundaries

Based on the MVN (with common covariance matrix) form of the g, a
theoretically optimal predictor/classifier/decision rule is

F ) = arg;r(nax {In { 7Tk ) — %;{’;{Z_l‘ﬂ,k +xf2—1y4

and boundaries between regions in ¥ where f (x) = k and f (x) = [ are
subsets of the sets

\ _ T F o 1 _
{x € RPIXL (my —py) = —1In (m) +SHET e — ST 1;«!;}

i.e. are defined by equalities of the form (1).
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K=3 and p=2 example

The figure below illustrates this in a simple K = 3 case where p = 2.

Figure: Contours of K = 3 bivariate normal pdfs and corresponding linear (equal
class probabilities) classification boundaries.
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Quadratic Discriminant Analysis

If class covariance matrices are allowed to vary (class-conditional
distribution k with covariance matrix L) a theoretically optimal
predictor/decision rule is

1 1
f (x) = arg max [In (71¢) — 5 In (detXy) — ~5 (x—p) T (x—p,)
k

and boundaries between regions in R” where f (x) = k and f (x) = [ are
subsets of the sets

{x = %p‘ % (x — ka)fﬂf (X — F‘;{) - % (x _P’,')fzf_l (% — ]”f) —
—In (&) = % In (detXy) + % In (detX;)}

T

Unless £, = X, this kind of set is a quadratic surface in R”, not a
hyperplane. One gets (not linear, but) Quadratic Discriminant Analysis.




LDA-QDA “compromise”

In order to use LDA or QDA, one must estimate the vectors p, and the
covariance matrix X or matrices X, from the training data. Estimating K
potentially different matrices X, requires estimation of a very large
number of parameters. So thinking about QDA versus LDA, one is again
In the situation of needing to find the level of predictor complexity that a
given data set will support. QDA is a more flexible/complex method than
LDA, but using it in preference to LDA increases the likelihood of over-fit.

One idea that has been offered as a kind of continuous compromise

between LDA and QDA is for « € (0, 1) to use

A o —~

Zk (f‘fj = f'tfzk -+ (1 T ﬂf) Zpooled

in place of Y, in QDA.
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Other LDA-QDA “compromises”

This kind of "compromise" thinking even suggests as an estimate of a
covariance matrix common across k

z (7) — r}’z‘pooled + (1 _ ’)') o?l
for v € (0,1) and ¢ an estimate of variance pooled across groups k and
then across coordinates of x, J, in LDA. Combining these two ideas, one
might even invent a two-parameter set of fitted covariance matrices
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Z’k (arr)/) == 0.“2;( ¥ (1 _ ﬂ{) (’}/ipooied L5 (l o f}’) Uzl)

for use in QDA. Employing these in LDA or QDA provides the flexibility of
choosing a complexity parameter or parameters and potentially improving
classification performance.




