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Support vector classifiers-linearly separable cases

Consider a 2-class classification problem. For notational convenience,
we'll suppose that output y takes values in G ={—1,1}. We further
develop linear classification methodology.

For B € 1P and By € R we'll consider the form

g (x) = X'B+ Po (1)

and a theoretical predictor/classifier

f (x) = sign (g (x)) (2)

We will approach the problem of choosing  and 5y to in some sense
provide a maximal cushion around a hyperplane separating between x;
with corresponding y; = —1 and x; with corresponding y; = 1.
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Optimization problem

In the case that there is a classifier of form (2) with O training error rate,
we consider the optimization problem

maximize M subject to y; (Xiu+Bo) > M Vi (3)
u with [ju|| =1
and Bp € Rt

This can be thought of in terms of choosing a unit vector u (or direction)
in P so that upon projecting the training input vectors X; onto the
subspace of multiples of u there is maximum separation between convex
hull of projections of the x; with y; = —1 and the convex hull of
projections of x; with corresponding y; = 1. (The sign on u is chosen to
give the latter larger x'u than the former.) The resulting classifier might
be termed a maximum margin classifier.




Maximum margin goal

Here is a p = 2 cartoon illustrating the basic "maximum margin" goal

Maximum Margin

Not Maximum Margin




Properties of a solution

Notice that if u and B¢ solve maximization problem (3), the margin is
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and the constant that makes the voting function (1) take the value 0 on
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Second version of the optimization problem

For purposes of applying standard optimization theory and software, it is
useful to reformulate the basic problem (3) several ways. First, note that
(3) may be rewritten as

maximize M subject to y; (x: (i) + ‘BU) >1 Yi (4)
u with |[ul| =1 M M
and g € 1

Then if we let

u
=
it's the case that y '
1Bl =7 or M=z
M 1Bl




Third version of the optimization problem

So (4) can be rewritten

1
minimize = ||B||* subject to y; (x;B+Po) >1 Vi (5)
perr 2
and Bo € R
This formulation is that of a convex (quadratic criterion, linear inequality

constraints) optimization problem for which there exists standard theory
and algorithms.

The so-called primal functional corresponding to (5) is (for « € RV)

N
Fo (B.Po.a) = 5 [1BI* - Lo (5 (X + o) 1) for a >0

To solve (5), one may for each & > 0 choose (B (&), fo («)) to minimize
Fp (-, -, &) and then choose & > 0 to maximize Fp (B («), Po (&), ).




Karush-Kuhn-Tucker conditions

The "Karush-Kuhn-Tucker conditions" are necessary and sufficient for
solution of this optimization problem.

These are the gradient conditions

oFp (B.Pow) X
3P = "
and
5 N
i (f;bﬁo, )_ﬁ_gﬁf'nyf—ﬂ (7)

the feasibility conditions

yi (XiB+PBo) —1=>0 Vi (8)
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Karush-Kuhn-Tucker conditions cont.

the non-negativity conditions

and the orthogonality conditions
(3 (B + Bo) — 1) =0 Vi
Now (6) and (7) are

N N
Za’,-y,- =0 and B = Za’.;y,-x; = B ()
=1 =1

and plugging these into Fp (B, Po, &) gives a function of « only.

(10)
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Standard optimization theory

That is, write
_ 1 2 L /
Fo () =5 [[B()[]" - Y ai (yixip(x) — 1)
F—=1
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H = (yiyxixj)




Standard optimization theory

Then the "dual" problem is

T 1 :
maximize 1'a — Etx’Hac subject toa >0 and a'y =0

and apparently this problem is easily solved.
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Properties of the solution
Now condition (9) implies that if a’™ > 0

e (B (a7) + o () = 1
so that

1. by (8) the corresponding x; has minimum x:B (a°?") for training
vectors with y; = 1 or maximum X8 («°P*) for training vectors with
yi = —1 (so that x; is a support vector for the "slab" of thickness
2M around a separating hyperplane),

2. Bo (a°") may be determined using the corresponding x; from

J/;'JBU (aﬂpt) =3 | —yf-x’;_ﬁ (tx“pt) 3 ﬁ[} (“opt) = i — x‘;ﬁ (aopt)

(apparently for reasons of numerical stability it is common practice to
average values y; — X:B (a°P") for support vectors in order to evaluate

Po («°71)) and,




Properties of the solution cont.

3.
N !
1=y;Bo («°) +yi (Z ”tijj) X;
5 opt
= yipo () + ) & yjyixix;
j=1
The fact (10) that B (a) = YN, a;y;x; implies that only the training cases

with a; > 0 (typically correspondlng to a relatively few support vectors)
determine the nature of the solution to this optimization problem.




Properties of the solution cont.

Further, for &)V the set indices of support vectors in the problem,

1B(&)]* = ¥ ¥ afPaPyyxix;
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the next to last of these following from 3. above, and the last following
from the gradient condition (6). Then the margin for this problem is
. . opt
simply computed in terms of the a;" s as
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