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Relaxing maximum margin classifier constraints

In a linearly non-separable case, the convex optimization problem

1
minimize = Hﬁ”2 subject to y; (X;f+ Po) > 1 Vi
peRr 2
and Bo € R

has no solution (no pair B € NP and By € N provides y; (x!B + fo) > 1
¥i). So in looking for good choices of B € R” and o € R) one might
relax the constraints of the problem slightly.

That is, suppose that ¢; > 0 and consider the set of constraints
Yi (X:B+PBo) + & >1Vi

The ¢, are "slack" variables and provide some "wiggle room" in search for
a hyperplane that "nearly" separates the two classes.
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Budget for total slack

The total amount of slack allowed might be controlled by setting a limit

N
Cq 1 IC
i

for some positive "budget" C.

If y; (X!B+ Bo) = 0, training case i is correctly classified. So if for some
pair B € P and Bp € R this holds for all i, the problem is separable. Any
non-separable problem must then have at least one negative y; (X + Po)
for any B € P and Bo € R pair. This in turn requires that the budget C
must be at least 1 for a non-separable problem to have a solution even
with the addition of slack variables. In fact, a budget C allows for at most
C mis-classifications in the training set. And in a non-separable case, C
must be large enough so that some choice of B € ¥ and fg € R
produces a classifier with training error rate no larger than C/N.




Support vector classifier problem

So consider the optimization problem

Yi(xXB+Po)+Ci=>1 Vi

nimize = [Bl°  subject ¢
b o 2 p i ik for some ¢; > 0 with Z;Nzl‘;r'gc

p € kP
and Bp € R
(1)
generalizing the third form of the separable problem. Now (1) is
equivalent to

yi(xju+pBo) > M(1—-¢;) Vi

maximize M  subject to .
) { for some ¢; > 0 with Zil cis C

u with [[ul| =1
and o € R

generalizing the original form of the separable problem. Here ¢, is a
fraction of the margin M that input X; is allowed to be on the "wrong
side" of its cushion around the hyperplane defined by X' + o = 0.
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Small p=2 problem

The ideas and notation of this development are illustrated in the Figure
below for a small p = 2 problem.
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Penalized (rather than constrained) budget

A more convenient version of (1) is

Yi(x;B+Po) +¢i>1 Vi

minimize = HﬁH FC* EEJ subject to { for some & > 0

ﬁ c RP =1
and fp € R
(2)
A nice development on pages 376-378 of lzenman’s book provides the

following solution to this problem (2) parallel to the development for
separable cases.




Dual problem

Generalizing the separable case dual problem

1
maximize 1'a — Eﬂc"Hﬂt subject toaw >0 and a'y =0

the present dual problem is for NHN = (Yiyjx:x;)
X

1
maximize 1'a — §a’Hn: subject to0 <a < C'land a'y=0 (3)
The constraint 0 < & < C*1 is known as a "box constraint" and the
"feasible region" prescribed in (3) is the intersection of a hyperplane
defined by 'y = 0 and a "box" in the positive orthant. The C* = o0

version of this reduces to the "hard margin" separable case.




-~

Properties of the solution
Upon solving (3) for a°P*, the optimal B € R” is of the form

Dpt E a{opt YiX; (4)

I\_L"‘]

for &) the indices of set of support vectors x; which have a’?pt > 0. The
points with 0 < a’?pt < C” lie on the "edge of the margin" (have {; =0
and lie on the surface of a "slab" of thickness 2M around the hyperplane)
and the ones with a"" = C* have ¢; > 0 and lie on the "wrong side" of
their surface of the slab. Any of the support vectors on the "edge of the
margin" (with 0 < a’”" < C*) may be used to solve for By € R as

Bo (&) = yi — ;B (&) (5)

(For reasons of numerical stability it is common practice to average values
yi — X. B («°PY) for such support vectors in order to evaluate Bg (a°").)
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Classifier “complexity”

C* is a regularization parameter and large C* in (2) corresponds to small
C in (1). Identification of a classifier requires only solution of the dual
problem (3), evaluation of (4) and (5) to produce linear form

g (x) =x'B+ Bo

and then classifier f (x) =sign(g (x)).

Even when a problem is linearly separable, there may be good reason to
use the present formulation with C* < oo (and a correspondingly larger
margin and more support vectors). Small C* (large C) corresponds to a
"low complexity" classifier with many support vectors contributing to the
ultimate form. The exact form of the classifier is less sensitive to a few
key data cases than for large C*. (If the problem were SEL prediction,
small C* would be the "low variance/high bias" case.) Cross-validation is
used In practice to choose an appropriate C™.
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Examples for p=2

Below is a figure illustrating the impact of C* on a support vector
classifier.
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