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Function space optimality argument

A more satisfying argument for use of "the kernel trick" might be based on
appeal to optimality/regularization considerations. The following comes
from a 2002 Machine Learning paper of Lin, Wahba, Zhang, and Lee.

Consider the abstract function space .4 associated with the non-negative
definite kernel K' and the optimization problem involving the "hinge loss"

N

minimize 3 (1 (Bo + 4 (). + A

and Bp € R

The hinge loss is convenient here in making optimality arguments and
there are several reasons that it is quite natural.




Expected hinge loss

Concerning the use of hinge loss:

1. Recall the development of Section 1.5.3 for the hinge loss
h3 (u) = (1 — u)_, and the fact that for (x,y) ~ P a function g
minimizing the expected hinge loss E(1 — yg (x))_ is

g" (x) = sign (P y =1x] - %)

(the minimum risk classifier under 0-1 loss). So dividing the whole
criterion (1) (hinge loss plus constant times squared A norm of h) by
N, an empirical version of expected hinge loss is involved, and one can
hope that an element h of .4 and value Bo will be identified so that
voting function By + h(x) is close to the optimal 0-1 loss classifier.




Expected hinge loss cont.

2. Further (again recalling the development in Section 1.5.3) since for all
u, I'lu<0] < (1—u), the criterion to be optimized involves an
empirical version of a bound for the 0-1 loss error rate for the voting

function Bp + h(x). So, again, one can hope that the voting
function of a classifier with a good 0-1 loss error rate will be identified

in the minimization.




Connection to SV classifier margin violations

3. Recalling the form of the SV classification optimization problem, the
quantity (1 — y; (X:B+ Po))_ is the fraction of the margin (M) by
which input X; violates its cushion around the classification boundary
hyperplane. (Points on the "right" side of their cushion don't get
penalized at all. Ones with (1 —y; (X;8+ o)), =1 are on the
classification boundary. Ones with (1 — y; (x}B+ o)), > 1 are
points mis-classified by the voting function.) The averége of such
terms is an average fractional (of the margin) violation of the cushion
and the optimization seeks to control this. So the loss really is
related to the SV classification ideas.
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Simplification via the “representer theorem”

The "Representer Theorem" implies that an optimizing h € .4 must be of
the form

N
bp (x) = 3 Bk (x.%)) = Bk (x)

So the minimization problem is

N N :
e 12 (1 (o + B () 05 | Y B (o)
= b= A
and Bo € R
that is, (for K = (K (x;,%;)))
N
E.ggﬁe ; (1—yi(Bo+ Bk(xi))), + f\%ﬁ’xﬁ

and fp € R
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Quadratic optimization problem

Now this is equivalent to the optimization problem

N / .

1 | | -

minimize E &+ A= B'KB subject to { yi (B k]EX:) + o) J;éb_ 1V
Be RN i3 - or some §; >

and Bp €

which for NHN = (y;y;K (x;,%;)) has dual problem of the form
X

1

ﬂq"Hq subject to0 <y <1land #'y=0 (2)

= /
maximize 15—
or

1 |
maximize 1'a — 5&’ (AQH) & subjectto0 <a < Aland &'y =0




Connection to the heuristic argument

That is, function space optimization problem (1) has a dual that is (for
the choice of C* = A and kernel 55K (x,z)) the same as that produced
by the heuristic argument. Then, if #°P" is a solution to (2), Lin et al. say
that an optimal B € RV is
Lo
~diag (yi, .o yw)

opt

(producing coefficients to be applied to the functions K (-,x%;)). On the
other hand, the heuristic argument prescribes that for a°' the solution to
its dual problem, coefficients in the vector

diag (y1,..., YN) &

get applied to the functions Ilg_r}(f (+,x;). Upon recognizing that
s %af‘j’pt it is evident that for C* = A and kernel %}C (-,-), the
heuristic argument produces a solution to the optimization problem (1).




