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Generalities

Another line of argument produces a SVM in a way that connects it to the

geometry of support vector classification in R”. Input feature vectors
map to an abstract function space .4 via

Subsequent to this mapping, all can be done using the abstract linear
space structure. One is really defining a classifier with inputs in .4, and
application of the support vector classifier argument can be made in terms
of the geometry of 4. "Linear classification" in .4 is the analogue of
support vector classification in R” if one starts from geometric motivation
like that of the support vector classifier. One seeks a "unit vector" (now in
A) and a constant so that inner products of transformed data case inputs
with the unit vector plus the constant, when multiplied by the y;,
maximize a margin subject to some (relaxed) constraints.




Function space formulation

All this is writable in terms of 4. That is, one wishes to

maximize M
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This is equivalent to the problem
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Linear combinations of training case inputs

Then either because optimization over all of 4 looks too hard, or because
some "Representer Theorem" says that it is enough to do so, one might
back off from optimization over .4 to optimization over the subspace
spanned by the set of N elements T (x;). Then writing

V = Zf-vzl Bi T (x;) so that
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(again, K is the Gram matrix) the optimization problem becomes
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where K; is the /th column of the Gram matrix.
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Non-linearity in the original input space

For B°P* and ﬁgpt solutions to the optimization problem and

N
Ve = 3 BT (x)
i=1

the voting function for the linear classifier in A is (for argument W € A)
t
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The corresponding voting function for the derived non-linear classifier on
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something very similar to the heuristic application of the "kernel trick."
The question is whether it Is exactly equivalent to the use of "the trick."




il Geometry and the kernel trick

The problem solved by " and Bg™" is equivalent for some A > 0 to
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Comparison of this to the first display on slide 7 in the 1304 deck and
consideration of the argument that follows it then shows that there is a
choice of C* for which when using kernel (1/(."’“‘)2 IC the heuristic/"kernel
trick" method produces a solution to the present function-space-support-
vector-classifier problem. This is the same circumstance as in the
penalized-fitting function-space-optimization argument. (The "kernel
trick" applied to kernel KC with cost parameter C* solves the present
geometric optimization problem applied to kernel (C*)2 JC with cost

l parameter C*.)




