The Gram-Schmidt Process and the QR Decomposition of X

Stephen Vardeman

Analytics Iowa LLC

ISU Statistics and IMSE

Linear models notation

We continue to use the notation

$$\mathbf{X}_{N \times p} = \begin{pmatrix} \mathbf{x}_1' \\ \mathbf{x}_2' \\ \vdots \\ \mathbf{x}_N' \end{pmatrix} \text{ and potentially } \mathbf{Y}_{N \times 1} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix}$$

and recall that it is standard linear models fare that ordinary least squares projects \mathbf{Y} onto $C(\mathbf{X})$, the column space of \mathbf{X} , in order to produce the vector of fitted values

$$\widehat{\mathbf{Y}}_{N imes 1} = \left(egin{array}{c} \widehat{y}_1 \ \widehat{y}_2 \ dots \ \widehat{y}_N \end{array}
ight)$$

Orthogonal bases for inner product spaces

For many purposes it would be convenient if the columns of a full rank (rank = p) matrix \mathbf{X} were orthogonal. In fact, it would be useful to replace the $N \times p$ matrix \mathbf{X} with an $N \times p$ matrix \mathbf{Z} with orthogonal columns and having the property that for each I if \mathbf{X}_I and \mathbf{Z}_I are $N \times I$ consisting of the first I columns of respectively \mathbf{X} and \mathbf{Z} , then $C(\mathbf{Z}_I) = C(\mathbf{X}_I)$. Such a matrix can be constructed using the so-called Gram-Schmidt process.

This process generalizes beyond application to \Re^N to general inner product spaces, and in recognition of that important fact we'll first describe it in general terms and then consider its implications for a (rank = p) matrix \mathbf{X} .

Gram-Schmidt process

Consider p vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p$. (These could be N-vectors where \mathbf{x}_j is the jth column of \mathbf{X} , in notational conflict with the convention that made \mathbf{x}_i the p-vector of inputs for the ith case in the training data. In that case one must read the following keeping in mind the local convention.) The **Gram-Schmidt process** proceeds as follows:

1. Set

$$\mathbf{z}_1 = \mathbf{x}_1 \;\; \mathsf{and} \;\; \mathbf{q}_1 = \left\langle \mathbf{z}_1, \mathbf{z}_1
ight
angle^{-1/2} \mathbf{z}_1 = rac{1}{\|\mathbf{z}_1\|} \mathbf{z}_1$$

2. Having constructed $\{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_{l-1}\}$, let

$$\mathbf{z}_{l} = \mathbf{x}_{l} - \sum_{j=1}^{l-1} \frac{\langle \mathbf{x}_{l}, \mathbf{z}_{j} \rangle}{\langle \mathbf{z}_{j}, \mathbf{z}_{j} \rangle} \mathbf{z}_{j} = \mathbf{x}_{l} - \sum_{j=1}^{l-1} \langle \mathbf{x}_{l}, \mathbf{q}_{j} \rangle \mathbf{q}_{j} \text{ and } \mathbf{q}_{l} = \frac{1}{\|\mathbf{z}_{l}\|} \mathbf{z}_{l}$$

Geometry

The figure below illustrates this construction for a simple case of p=2.



Orthonormal basis for the span

It is easy to see that $\langle \mathbf{z}_{l}, \mathbf{z}_{j} \rangle = 0$ for all j < l (building the orthogonality of $\mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{z}_{l-1}$ by induction), since

$$\langle \mathbf{z}_{l}, \mathbf{z}_{j} \rangle = \langle \mathbf{x}_{l}, \mathbf{z}_{j} \rangle - \langle \mathbf{x}_{l}, \mathbf{z}_{j} \rangle$$

as at most one term of the sum in step 2. is non-zero. Further, assume that the span of $\{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_{l-1}\}$ is the same as the span of $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{l-1}\}$. \mathbf{z}_l is in the span of $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_l\}$ so that the span of $\{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_l\}$ is a subset of the span of $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_l\}$. And since any element of the span of $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_l\}$ can be written as a linear combination of an element of the span of $\{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_{l-1}\}$ (span of $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{l-1}\}$) and \mathbf{x}_l the span of $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_l\}$ is a subset of the span of $\{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_l\}$. That is that $\{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_l\}$ and $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_l\}$ have the same span, and vectors $\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_l$ comprise an **orthonormal basis** for the span of $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_l\}$.

Projections

Since the z_j are perpendicular, for any vector \mathbf{w} ,

$$\sum_{j=1}^{I} \frac{\langle \mathbf{w}, \mathbf{z}_{j} \rangle}{\langle \mathbf{z}_{j}, \mathbf{z}_{j} \rangle} \mathbf{z}_{j} = \sum_{j=1}^{I} \langle \mathbf{w}, \mathbf{q}_{j} \rangle \mathbf{q}_{j}$$

is the projection of \mathbf{w} onto the span of $\{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_l\}$ (of $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_l\}$). (To see this, consider minimization of the quantity $\left\langle \mathbf{w} - \sum_{j=1}^l c_j \mathbf{z}_j, \mathbf{w} - \sum_{j=1}^l c_j \mathbf{z}_j \right\rangle = \left\| \mathbf{w} - \sum_{j=1}^l c_j \mathbf{z}_j \right\|^2$ by choice of the constants c_j .) In particular, $\sum_{j=1}^{l-1} \left\langle \mathbf{x}_l, \mathbf{q}_j \right\rangle \mathbf{q}_j$ in step 2. of the Gram-Schmidt process is the projection of \mathbf{x}_l onto the span of $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{l-1}\}$.

Gram-Schmidt in Euclidean spaces

Since the \mathbf{z}_i are perpendicular, for any vector \mathbf{w} ,

$$\sum_{j=1}^{I} \frac{\langle \mathbf{w}, \mathbf{z}_{j} \rangle}{\langle \mathbf{z}_{j}, \mathbf{z}_{j} \rangle} \mathbf{z}_{j} = \sum_{j=1}^{I} \langle \mathbf{w}, \mathbf{q}_{j} \rangle \mathbf{q}_{j}$$

is the projection of \mathbf{w} onto the span of $\{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_l\}$ (of $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_l\}$). (To see this, consider minimization of the quantity $\left\langle \mathbf{w} - \sum_{j=1}^{l} c_j \mathbf{z}_j, \mathbf{w} - \sum_{j=1}^{l} c_j \mathbf{z}_j \right\rangle = \left\| \mathbf{w} - \sum_{j=1}^{l} c_j \mathbf{z}_j \right\|^2$ by choice of the constants c_j .) In particular, $\sum_{j=1}^{l-1} \left\langle \mathbf{x}_l, \mathbf{q}_j \right\rangle \mathbf{q}_j$ in step 2. of the Gram-Schmidt process is the projection of \mathbf{x}_l onto the span of $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{l-1}\}$.

QR decomposition of **X**

The construction of the orthogonal variables \mathbf{z}_j can be represented in matrix form as

$$\mathbf{X}_{N \times p} = \mathbf{Z}_{N \times p} \mathbf{\Gamma}_{p \times p}$$

where Γ is upper triangular with

 $\gamma_{kj}=$ the value in the kth row and jth column of Γ

$$= \begin{cases} 1 & \text{if } j = k \\ \frac{\langle \mathbf{z}_k, \mathbf{x}_j \rangle}{\langle \mathbf{z}_k, \mathbf{z}_k \rangle} & \text{if } j > k \end{cases}$$

QR decomposition of **X** cont.

Defining

$$\mathbf{D} = \operatorname{diag}\left(\left\langle \mathbf{z}_{1}, \mathbf{z}_{1}\right\rangle^{1/2}, \ldots, \left\langle \mathbf{z}_{p}, \mathbf{z}_{p}\right\rangle^{1/2}\right) = \operatorname{diag}\left(\left\|\mathbf{z}_{1}\right\|, \ldots, \left\|\mathbf{z}_{p}\right\|\right)$$

and letting

$$\mathbf{Q} = \mathbf{Z}\mathbf{D}^{-1}$$
 and $\mathbf{R} = \mathbf{D}\mathbf{\Gamma}$

one may write

$$X = QR$$

that is the so-called \mathbf{QR} decomposition of \mathbf{X} .

Note that the notation used here is consistent, in that for \mathbf{q}_j the jth column of \mathbf{Q} , $\mathbf{q}_j = (\langle \mathbf{z}_j, \mathbf{z}_j \rangle)^{-1/2} \mathbf{z}_j$ as was used in defining the Gram-Schmidt process.

QR and OLS

Q is $N \times p$ with

$$\mathbf{Q}'\mathbf{Q} = \mathbf{D}^{-1}\mathbf{Z}'\mathbf{Z}\mathbf{D}^{-1} = \mathbf{D}^{-1}\mathbf{diag}\left(\left\langle \mathbf{z}_{1}, \mathbf{z}_{1}\right\rangle, \ldots, \left\langle \mathbf{z}_{\rho}, \mathbf{z}_{\rho}\right\rangle\right)\mathbf{D}^{-1} = \mathbf{I}$$

consistent with the fact that \mathbf{Q} has for columns perpendicular unit vectors that form a basis for $C(\mathbf{X})$. \mathbf{R} is upper triangular so that only the first I of these unit vectors are needed to create \mathbf{x}_I and there are efficient ways to compute \mathbf{R}^{-1} .

It is computationally useful that the projection of response vector \mathbf{Y} onto $C(\mathbf{X})$ is

$$\widehat{\mathbf{Y}} = \sum_{j=1}^{
ho} \left\langle \mathbf{Y}, \mathbf{q}_j
ight
angle \mathbf{q}_j = \mathbf{Q} \mathbf{Q}' \mathbf{Y}$$

and

$$\widehat{oldsymbol{eta}}^{\mathsf{OLS}} = \mathbf{R}^{-1} \mathbf{Q}' \mathbf{Y}$$