Kernel Principal Components

Stephen Vardeman

Analytics Iowa LLC

ISU Statistics and IMSE

PCs after transformation to a Euclidean space

Consider first the possibility of using a nonlinear function $\phi: \mathbb{R}^p \to \mathbb{R}^M$ to map data vectors \mathbf{x} to (a usually higher-dimensional) vector of features $\phi(\mathbf{x})$. This creates a new $N \times M$ data/feature matrix

$$\mathbf{\Phi} = \left(egin{array}{c} oldsymbol{\phi}'\left(\mathbf{x}_{1}
ight) \ oldsymbol{\phi}'\left(\mathbf{x}_{2}
ight) \ dots \ oldsymbol{\phi}'\left(\mathbf{x}_{N}
ight) \end{array}
ight)$$

with entries of Φ belonging to \Re . After centering via

$$\widetilde{\mathbf{\Phi}} = \mathbf{\Phi} - \frac{1}{N} \mathbf{J} \mathbf{\Phi} = \left(\mathbf{I} - \frac{1}{N} \mathbf{J} \right) \mathbf{\Phi}$$

for **J** an $N \times N$ matrix of 1s, a SVD of $\widetilde{\Phi}$, produces singular values and both sets of singular vectors for the new feature matrix.

Centered features in a reproducing kernel space

Now suppose \mathcal{K} is a kernel function and one maps data vectors \mathbf{x} to elements $T(\mathbf{x}) = \mathcal{K}(\mathbf{x}, \cdot)$ in the abstract (function) feature space \mathcal{A} . One can think of finding "principal components" for the transformed training set in this feature space. First, the function

$$\overline{\mathcal{K}}\left(\cdot\right) \equiv \frac{1}{N} \sum_{i=1}^{N} \mathcal{K}\left(\mathbf{x}_{i},\cdot\right)$$

is a well-defined linear combination of the images of the training set in \mathcal{A} and therefore a sensible "center" of the transformed training set. The functions

$$\mathcal{K}\left(\mathbf{x}_{i},\cdot\right)-\overline{\mathcal{K}}\left(\cdot\right)$$

are then sensible centered abstract feature values for the training set.

Matrix of inner products of centered features

Corresponding to the matrix of inner products for a centered set of N points in a Euclidean space is the $N \times N$ matrix of inner products of centered features in A,

$$\mathbf{C}\!\equiv\!\left(\left\langle \mathcal{K}\left(\mathbf{x}_{i},\cdot\right)-\overline{\mathcal{K}}\left(\cdot\right),\mathcal{K}\left(\mathbf{x}_{j},\cdot\right)-\overline{\mathcal{K}}\left(\cdot\right)\right\rangle _{\mathcal{A}}\right)_{\substack{i=1,\ldots,N\\j=1,\ldots,N}}$$

Then using the fact that $\langle \mathcal{K}(\mathbf{x},\cdot), \mathcal{K}(\mathbf{z},\cdot) \rangle_{\mathcal{A}} = \mathcal{K}(\mathbf{x},\mathbf{z})$ and the notation **K** for the Gram matrix with entries $\mathcal{K}(\mathbf{x}_i,\mathbf{x}_j)$, one gets the representation

$$C = K - \frac{1}{N}JK - \frac{1}{N}KJ + \frac{1}{N^2}JKJ$$

Eigen analysis of C produces principal components (N vectors of length N of scores) for the training data expressed in the abstract feature space.

Principal component "direction" functions

To realize the entries in these eigen vectors of kernel principal component scores as inner products of the N functions $\mathcal{K}(\mathbf{x}_i,\cdot) - \overline{\mathcal{K}}(\cdot)$ with "principal component directions" in the abstract feature space, A, one may return to Section 2.3.1 and begin with any orthonormal basis (coming, for example, from use of the Gram-Schmidt process) $\mathcal{E}_{1}\left(\cdot\right)$, $\mathcal{E}_{2}\left(\cdot\right)$, ..., $\mathcal{E}_{N}\left(\cdot\right)$ for the span of the $\mathcal{K}\left(\mathbf{x}_{i},\cdot\right)-\overline{\mathcal{K}}\left(\cdot\right)$. Then the general inner product space argument beginning with an $N \times N$ matrix with entries $\langle \mathcal{K}(\mathbf{x}_i,\cdot) - \overline{\mathcal{K}}(\cdot), \mathcal{E}_j(\cdot) \rangle_A$ produces N basis functions $\mathcal{V}_{1}\left(\cdot\right)$, $\mathcal{V}_{2}\left(\cdot\right)$, ..., $\mathcal{V}_{N}\left(\cdot\right)$ whose \mathcal{A} inner products with functions $\mathcal{K}\left(\mathbf{x}_{i},\cdot\right)-\overline{\mathcal{K}}\left(\cdot\right)$ are (up to a sign for each $\mathcal{V}_{i}\left(\cdot\right)$) the entries of the eigen vectors of \mathbf{C} . In cases of small p it may be of interest to examine the nature of these abstract principal component "direction" functions through some plotting.