Boosting: Successive Approximation in SML

Stephen Vardeman
Analytics lowa LLC
ISU Statistics and IMSE

Boosting in predictor development

Boosting is another line of thinking that leads to the use of weighted
linear combinations of predictors. This methodology is really just an
Instance of the basic numerical analysis notion of successive
approximation to find a solution to an equation or an optimizer of a
functional.

There is general gradient boosting (and the famous AdaBoost.M1
algorithm). But we begin with the special case of SEL boosting, because
this version is both particularly easy to understand and explain and of high
practical value. The basic idea is to repeatedly try to improve an
approximator for E[y|x] by successively adding small corrections (based on
modeling current residuals) to current approximators.

SEL boosting

SEL boosting begins with some predictor fy (x) (like, e.g., fy (x) = ¥).
With an iterate f,,_1 (x) in hand, one fits some SEL predictor, say &,, (x),
to the N "data pairs" (x;, Vi — E. (x;)) consisting of inputs and current
residuals. (Typically, some very simple/crude/non-complex predictor form
is used for &;.) Then, for some "learning rate" v € (0, 1), one sets

?m (X) — ﬁn—l (X) i lfé::ﬂ (X)

One iterates on m through some number of iterations, M (typically chosen
by cross-validation). Commonly quoted choices for v are numbers like .01
and the smaller is v, the larger must be M.

SEL boosting

SEL boosting successively corrects a current predictor by adding to it some
fraction of a predictor for its residuals. The value v functions as a
complexity or regularizing parameter, as does M. (Small v together with
large M correspond to large complexity.) Boosting ends with a linear
combination of fitted forms as a final predictor/approximator for E|y|x]|.

Sequential modification of a predictor is not discussed Iin ordinary
regression/linear models contexts because if a base predictor is an OLS
predictor for a fixed linear model, corrections to an initial fit based on this
same model fit to residuals will predict that all residuals are 0. In this
circumstance boosting does nothing to change or improve an initial OLS
fit.

General gradient boosting

Now consider approximate empirical optimization (over choice of
real-valued function g) of
EL(g(x).y)

through (successive approximation) search for predictor f that optimizes

N
Y L(f(xi),y;) =N-err

1=1

One begins with some f (x) (like, e.g., fo (x) = argmin Y. L (¥, yi)).
y

With iterate f,,_{ (x) in hand, consider how to improve the current total

training set loss E:ﬂil L (?m_I (X;) ,y,-).

-~

Gradient boosting up-dates

et
. d
Yim— — a_ﬁ (ymy;'))
y Y=Ffm-1(x;)
be the elements of the negative gradient of total loss wrt the training set
predictions. One would like to correct f,,_1 (x) in a way that moves each
fm—1 (X;) by roughly a common multiple of its y;,,. To that end, one fits
some SEL predictor, say &, (x), to "data pairs" (X;, Yim). (Typically some
very simple form of "base predictor" is used for &,,.)

Then let p,, > 0 (controlling the "step-size" in modifying f,,_1 (x)) stand
for a multiplier for &,, (x) such that

N
Z L (ﬁﬂ—l (X;) 3 pmém (X,‘) T_V;')
=1

is small (ideally, minimum).

Gradient boosting updates cont.

Finally, for some "learning rate" v € (0O, 1),

~

?m (X) — I'm—1 (X) T Ulﬂmém (X)

Is an approximate "steepest descent" correction of E (x). (Of course,
other criteria besides SEL—like AEL—could be used in fitting &,, (x) and the

learning rate could be chosen to depend upon m.)

Gradient boosting with trees

The development here allows for arbitrary base predictors. But especially
because trees are invariant to monotone transformations of coordinates of
X, the functions &,, are often rectangle-based (and even restricted to
single-split-trees in the case of AdaBoost.M1). If a tree-building applied
to "data pairs" (X;, yim) produces a set of non-overlapping rectangles

I, B oo R, that cover the input space, rather than using for &, (x) in
rectangle R; some average of the values y;,, (for training cases with

X; € R) it makes sense to use

&, (X) = arg min Z] (ﬁn_l (%;) + <, y;) for x € R,

c I st. X;ER]

and take p,, = 1. This is the form typically used in gradient boosting
with trees.

SEL gradient boosting

We looked first SEL boosting. To establish that it is a version of gradient
L] o A 2
boosting, simply now suppose that L (y,y) =5 (y —y)°. Then

. d 5
Vim = — a’“((y — yf))

and for SEL the general gradient boosting corrections are indeed based on
the prediction of ordinary residuals.

= Vi — ﬁn—l (X;‘)
y=fm-1(x;)

AEL gradient boosting

Suppose next that L(y,y) = |y — y|. Then, beginning from f (x) (say
fo (x) = median {y;}),

: 5 . .
Yim — — ﬁ (‘y . yf‘) h — sIgn (Y.f — ﬁn—l (xi))

y=fm-1(X;)
So a gradient boosting update step i1s "fit a SEL predictor for ==1s coding
the signs of the residuals from the previous iteration." In the event that
the base predictors are regression trees, &,, (X) in a rectangle will be a

median of =1s coming from signs of residuals for cases with X; in the
rectangle (and thus have value either —1 or 1, constant on the rectangle).

Binomial deviance loss gradient boosting

Referring again to our development of optimal voting functions for 2-class
classifiers, it's clear that approximation to optimal voting functions g (x)

can produce approximately optimal 2-class classifiers. Then consider
h (u) =In(l14+exp(—u))/In(2) and the loss

L(g(x),y)=h(yg(x))=In(l+exp(—yg(x)))/In(2)

For this situation

d
j}fm == % (lﬂ (1 —f_exp(_yi.;l)) / In (2))

1 (?;n—l (X,’)E}(p(—_}ﬂ'_}?{))

- In 2 I—I—E‘Xp(_yiﬁn—l (X,‘))

~
o~ y

y=Ifm—1(X;)

-

and boosting can be expected to produce a voting function approximating
the log likelihood ratio.

Exponential loss gradient boosting

For the exponential function hy (u) = exp (—u) and 2-class classification
loss L (g (x),y) = ha (yg (x)) one has

N 0 . 2
Yim — — ﬁ exp(_ny) — Vi €Xp (_J/fﬁn—l (X,‘))

V=Fp_1(x;)

and boosting produces a voting function approximating half of the log
likelihood ratio. (For the choice of base predictors as single-split trees,
gradient boosting is a version of the famous AdaBoost.M1 algorithm.)

Hinge loss gradient boosting

For the "hinge" function h3 (u) = (1 — u)_ and 2-class classification loss
L(g(x).y) = hz(yg (x)). one gets

. %, A .
Yim = — a—? (1 _y.-'_}/')_|_ — yf"([yr'f:*n—l (X,’) < 1}

o~

V=rfm_1(x;)

and boosting produces a voting function approximating the optimal
classifier directly.

Boosting in practice: tree complexity

There are several issues that arise in the practical use of boosting,
particularly if trees are the base predictors. These mostly concern control
of complexity parameters/avoiding over-fit/regularization in boosting.

One such issue Is the question of how large trees should be allowed to
grow if they are used as the functions &,, (x) in a boosting algorithm. The
answer seems to be "Not too large, maybe to about 6 or so terminal
nodes." Another (probably better) approach to this question would seem
to be to grow large trees and then employ cost-complexity pruning,
ultimately using cross-validation to choose a value for the weight a (or

A=1/&).

Boosting in practice: M and shrinkage

M can/should be limited in size (very large values surely producing
over-fit). A crude methodology suggested early in the development of
boosting was to hold back a part of a training sample and watch
performance of a predictor on that single test set as M increases.

"Shrinkage" /use of v € (0,1) and

-~

?m (X) — I'm—1 (X) I Viﬂmém (X)

provides regularization in gradient boosting (as for the SEL case). This
doesn’'t make the "full correction" to #,,_1 in producing f. and typically
requires larger M for good prediction than the non-shrunken version.

Boosting in practice: subsampling and CV

The notion of "subsampling" in boosting is that at each iteration of a
boosting program, instead of choosing an update based on the whole
training set, one chooses a fraction 17 of the training set at random, and
fits to it (using a new random selection at each iteration). This
methodology might be called "stochastic gradient boosting," reduces the
computation time per iteration, and can improve predictor performance.

Ultimately, all of 1) control of parameters governing tree size, 2) choice of
M and v, and 3) choice of parameters controlling details of subsampling
can be subjected to (joint) optimization/tuning using cross-validation.

Boosting in practice: XGBoost

A very popular implementation of gradient boosting goes by the name
"XGBoost" (for "eXtreme Gradient Boosting"). This is an R package
(with similar implementations in other systems) that provides a lot of
flexibility in the implementation of boosting, and code that is very fast to
run (even providing parallelization where hardware supports it). The
caret package can be used to do cross-validation for XGBoost, allowing
one to tune on a number of algorithm complexity parameters.

