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Linear log conditional probability ratios

The common covariance MVN, model behind LDA makes the ratios

M(Pb—kﬂ)

Ply = 1|x]

linear in x. An alternative to those model assumptions is to simply
assume that for all kK < K

Ply=kb\ _, ¥,

There are then K — 1 constants Bxo and K — 1 (p-dimensional) vectors
B, = (Bri. Bx2.- -, Bkp) to be specified (not necessarily tied to class
probabilities or mean vectors or a common within-class covariance matrix

for x).




Conditional distributions, not joint

The set of relationships (1) do not fully specify a joint distribution for
(x,y). They specify only the nature of the conditional distributions of y|x.

This situation is exactly analogous to that in ordinary simple linear
regression. A bivariate normal distribution for (x, y) has normal
conditional distributions for y with a constant variance and mean linear In
x. But one may make those assumptions conditionally on x, without
assuming anything about the marginal distribution of x (that in the
bivariate normal model is univariate normal).




Implied conditionals and classification

Using 0 to stand for a vector containing all the constants fyo and the
vectors B,, the linear log probability ratio assumptions produce the forms
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for k < K, and
1

15 Zk [ exp (ﬁkg + Zj—’zl ﬁijj)

k(x,8)=Ply =K|x] =

Optimal 0-1 loss classification is then based on maximizing py (x, 8) over

k=1 2 ..., K.




Examples for p=1 and K=2

Below is a plot of several different p = 1 forms for p; (x, fo, p1) in a
K = 2 model. The parameter sets are

Red Po=0,p61=1

Blue Po=—4p1 =2

Green Bo=—2.p1— —2

In each case py (x, Bo, f1) = .5 where x = — o/ 1, the function increases
in x exactly when 51 > 0, and curve steepness increases with |ﬁ1\
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An example for p=2 and K=2

In a K = 2 case with p =2, (for {1, 2} coding of y) the kind of
relationship pictured below holds. p; (X, fo, B1, B2) defines an "s-shaped
surface" that is "steep" when coefficients 1, B> have large absolute

values, is constant on lines Bg + B1x1 + Poxo = ¢, and takes the value .5
on the line Bo + P1x1 + Pax» = 0.

Ply=1|x1,x7]




il Maximum likelihood fitting I

Assumption (1) generalizes the model producing LDA, and methods of
fitting based on training data are necessarily fundamentally different.
Using maximum likelihood in LDA, the K probabilities 71, the K means
M, . and the covariance matrix X are chosen to maximize the likelihood

ﬁﬁhg (X;‘}IH, Z)

This is a mixture model and the complete likelihood is involved, 1.e. a
joint density for the N pairs (x;,y;).

On the other hand, standard logistic regression methodology maximizes

N
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Ul over choices of 8. This is a conditional (on the x; observed) likelihood. (I
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K=2 logistic regression and classification
Ina K =2 case with {—1,1} coding for y, 1/N times the negative

log-likelihood is
1 +exp (J’f (50 + i /3;')‘-’:}) )] (2)

For (x,y) ~ P this is an empirical version of

ceen(or ()

This 1s In 2 times an upper bound on the error rate of a classifier with
voting function —fB¢ — Zle Bix;. So coefficient vectors giving small
values of (2) (i.e. large likelihood) can be expected to produce classifiers
with small (0-1 loss) Err.
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Penalized fitting

Optimization of (2) ignores the potential for overfitting. Penalization (for
standardized inputs) of the logistic regression coefficients is a means of
Investigating a natural spectrum of fitted logistic regressions. For example,
glmnet will optimize the elastic net penalized negative loglikelihood
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(where B € R”). Comparison of cross-validation classification error rates
across a grid of coefficient vectors (A, a) affords appropriate choice of
complexity.




Basis functions and transforms

Good logistic regression models produce good classifiers when one classifies
according to the largest predicted probability. And just as the usefulness
of LDA can be extended by consideration of transforms/features made
from an original p-dimensional x, the same is true for logistic regression.

For example, beginning with x; and x» and creating additional predictors
X2,X22, and xj1x2, one can use logistic regression technology based on the
5-dimensional input (xl,)(g,xlz,xg,xlm) to create classification boundaries
that are quadratic in the original x; and xp. An example of the kind of
functional form for the conditional probability that y = k given a bivariate
Input X that can result I1s on the next slide.




Hypothetical conditional probability y=1
The plot below results when one uses the quadratic form —.2,"<if2 — .3){% to
make logistic probabilities that y = 1 (for 1-2 coding). Constant-
probability contours of such a surface are ellipses in (x{, x> )-space.

Ply=1|x1,x2]
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Case-control studies and fitting

It is common to encounter situations where (say in a K = 2 context with
0-1 coding) 71g is quite small. Rather than trying to do analysis on a
random sample of (x, y) pairs where there would be relatively few y = 0
cases, there are a number of potentially important practical reasons for
doing analysis of a dataset consisting of random sample of Ny instances
("cases") with y = 0 and a random sample of N instances ("controls")
with y = 1, where Ny/ (Np + Ny ) is nowhere nearly as small as 779.  (In
fact, Ny on the order of 5 or 6 times N\ is often recommended.)
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Case-control studies and fitting cont.

So under the logistic regression assumption that
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fitting to a case-control data set should produce
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So estimated coefficients appropriate for the original context are (a

specialized instance of the general formula for shifting conditional
probabilities for y|x based on class frequencies differing from the 77s)
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Separating hyperplanes

In the K = 2 group case use again —1-1 coding. If thereisa f € R” and
real number 59 such that in the training data

y =1 exactly when x'B+ By > 0
a "separating hyperplane"
{x € R°|x'B+ Bo =0}

can be found via logistic regression. The (conditional) likelihood will not
have a maximum, but if one follows a search path far enough toward
limiting value of O for the loglikelihood or 1 for the likelihood, satisfactory
p € RP and Pp from an iteration of the search algorithm will produce
separation.




Perceptron Algorithm

A famous older algorithm for finding a separating hyperplane is the
so-called "perceptron" algorithm. It can be defined as follows. From
some starting points ﬁU and ﬁg cycle through the training data cases in
order (repeatedly as needed). At any iteration /, take

| y. . phdl yi=1 and x;+ o >0, or
{ﬁ =P and By = Py } If{y;——l and x:B+ By <0

T otherwise
and B = fc, Lty

This will eventually identify a separating hyperplane when a series of V
iterations fails to change the values of B and Po.




Non-uniqueness of separating hyperplanes

If there is a separating hyperplane, it will typically not be unique. One
can attempt to define and search for "optimal" such hyperplanes that,
e.g., maximize distance from the plane to the closest training vector. The
material that follows on support vector machines is exactly in this

direction.




