Optimal Subtrees

Stephen Vardeman
Analytics lowa LLC
ISU Statistics and IMSE




Seeking optimal tree complexity

It is, of course, possible to continue splitting rectangles/adding branches
to a tree until every distinct x in the training set has its own rectangle.
But that is not helpful in a practical sense, in that it corresponds to a very
"low bias/high variance" /complex predictor. So how does one find a tree
of appropriate size? How does one choose a size at which to stop growing
a tree, or more generally, prune a large tree back to a good size? (This
latter is more general in that pruning a tree can produce subtrees not met
in a sequence of trees as built up to a final one.) It turns out that it is
possible to efficiently find a nested sequence of "optimal" subtrees of a
large tree, and that methodology can in turn be used in cross-validation.




Penalizing training error

For T a subtree of some fixed large tree Ty (e.g. grown until the cell with
the fewest training X; contains 5 or less such points or in classification

contexts until the training error is 0) write

N
E(T)=N-&rr= ;L(?(x;),y,-)

(the total training error for the tree predictor based on T). For a >0

define the quantity
G (T)= |T|+u<E(T)

(for, in the obvious way, \T\ the number of final nodes in the candidate

tree).




Alternate parameterization and best tree

It is, of course, equivalent to consider a quantity E (T ) + A |T| for a

A > 0 in notation more like that used in other contexts like the ridge
regression problem. Using a as a weight on E ( T) to define (g, Is
equivalent to using A = 1/a as a weight on |T|. The penalized form
E(T)+ A|T| is probably more often used (at least for user interface) in
software implementations. The present C, is more natural in the context

of the following development of optimal subtrees.

Write
T (a) = argmin G, (T)

subtrees T

and let f, be the corresponding predictor.




Search

The question of how to find a subtree T (&) optimizing C, (T) without
making an exhaustive search over subtrees for every different value of «
has a workable answer. There is a relatively small number of nested
candidate subtrees that are the only ones that are possible minimizers of
Cx (T), and as & decreases one moves through that nested sequence of
subtrees from the largest/original tree to the smallest.




-~

First candidate sub-tree

One may quickly search over all "pruned" versions of Ty (subtrees T
created by removing a node where there is a fork and all branches that
follow below it) and find the one with minimum

E{¥)—E | Tg)
| To| — | T

(This is the per node—of the lopped off branch of the first tree—increase in
E.) Call that subtree T;. Ty is the optimizer of C, (T ) over subtrees of
To forevery &« > (|To| —|T1|) / (E(T1) — E(Top)), but at
«=(|To|—|T1|)/ (E(Ty) — E(Ty)), the optimizing subtree switches to
1.




Second (and later) candidate sub-trees

One then may search over all "pruned" versions of T for the one with
minimum

E(T)—E(N)
[ Ta| = [T

and call it Tp. T; is the optimizer of C, ( T) over subtrees of Ty for every
(72| = | Tof)/ (E(Ts)— E(h)) =& <

([ Tol = [T1[) / (E(T1) — E(To)), but at

« = (|T1|—=|T2|)/ (E(Ty) — E(Ty)) the optimizing subtree switches to
T>, and so on. (If there ever happens to be a tie among subtrees in terms
of a minimizing a ratio of increase In total training error per decrease In
number of nodes, one chooses the subtree with the smaller | T|.)




Optimal subtree and cost as a function of «

For T (a) optimizing C, (T), the function of «,

Ci (Fla))— mTinCa (T)

Is piecewise linear in «, and both it and the optimizing nested sequence of
subtrees can be computed very efficiently in this fashion. The figure on
the next slide illustrates the geometry of the situation. Notice that a is a
complexity parameter and | T («)| is non-decreasing in «.




Generic geometry of optimization

T|+a-E(T)

T a subtree of T,

N T U T S
|

min _(|T|+a-E(T))

4
-




-~

Cross-validation choice of tree predictor

One can then employ K-fold cross-validation to choose a as follows. For
each of the K remainders T — T,

1. grow an appropriate large tree (on a given dataset), then

2. "prune" the tree in 1. back by for each & > 0 (a complexity
parameter, weighting the remainder-in-training-sample error total £,
(for T — Ty) against complexity defined in terms of tree size)
minimizing over choices of subtrees, the quantity

Cx [T) = |T| +i-EeT)

(4

(for Ex (T) the error total for the corresponding tree predictor).
Write
Ti () = argmin C5(T)

subtrees T

and let ﬁf be the corresponding predictor.




Cross-validation choice of tree cont.

Then letting k (/) be the index of the fold T, containing training case /,
one computes the cross-validation error

1 N

eV (@) = 5 L L (B () )

=

For @ a minimizer of CV (a), one then operates on the entire training set,
growing a large tree T and then finding the subtree, say T («a), optimizing
C;(T)=|T|+&-E(T), and using the corresponding predictor f; (in a
pick-the-winner fashion).




