Document Features for Text Processing

Stephen Vardeman
Analytics lowa LLC
ISU Statistics and IMSE

Generalities

An important application of both supervised and unsupervised learning
methods Is that of text processing. The object is to quantify structure
and commonalities in text documents. Patterns in characters and
character strings and words are used to characterize documents, group
them into clusters, and classify them into types..

Suppose that N documents in a collection (or corpus) are under study.
One needs to define "features" for these, or at least some kind of "kernel"
functions for computing the inner products required for producing principal
components in an implicit feature space (and subsequently clustering or
deriving classifiers, and so on).

-~

Word counts

If one treats documents as simply sets of words (ignoring spaces and
punctuation and order of words) one simple set of features for documents
d, o, o, dy is a set of counts of word frequencies. For a set of p words
appearing in at least one document, one might take

x;; = the number of occurrences of word j in document /

and operate on an N X p data matrix X. These raw counts x;; are often
transformed before processing. One popular idea is the use of a "tf-idf"
(term frequency-inverse document frequency) weighting of elements of X.
This replaces x;; with

N
N I[x;>0
Yi=1![xj > 0]

tij = Xijj In
e
or variants thereof. (This up-weights non-zero counts of words that occur
in few documents. The logarithm prevents this up-weighting from
overwhelming all other aspects of the counts.)

-~

Word counts cont.

One might also decide that document length is not of primary interest and
determine to normalize vectors x; (or t;) in one way or another. That is,
one might begin with values

Xii Xii
I or i}

Zf:1 Xij %]

rather than values x;;. Of course, if the documents in the corpus all have
roughly the same length this normalization changes nothing.

Processing methods that are based only on variants of the word counts x;
are usually said to be based on the "Bag-of-Words." They ignore
potentially important word order. (The instructions "turn right then left"
and "turn left then right" are obviously quite different instructions.) One
could then instead consider ordered pairs or n-tuples of words.

-~

Considering order

So, with some "alphabet" .4 (that might consist of English words, Roman

letters, amino acids in protein sequencing, base pairs in DNA sequencing,
etc.) consider strings of elements of the alphabet, say

s = b by -- b‘s‘ where each b; € A4

A document (... or protein sequence ... or DNA sequence) might be
idealized as such a string of elements of 4. An n-gram in this context is
simply a string of n elements of 4, say

u=— byby---b, where each b; € A

Frequencies of unigrams (1-grams) in documents are (depending upon the
alphabet) bag-of-words statistics for words or letters or amino acids, etc.

-~

Considering order cont.

Use of counts of occurrences of all possible n-grams in documents is often
be problematic, because unless |.4| and n are fairly small, p = [A’
huge and X huge and sparse (for ordinary NV and |s|). And in many

contexts, sequence/order structure is not so "local" as to be effectively

7 .
will be

expressed by only frequencies of n-grams for small n.

One idea that seems to be currently popular is to define a set of
interesting strings, say ¢4 = {u,;}*_, and look for their occurrence
anywhere in a document, with the understanding that they may be
realized as substrings of longer strings. That is, when looking for string u
(of length n) in a document s, one counts every different substring of s
(say s’ = s;;sj, - - - 5.) for which

S — u

But those substrings of s matching u are discounted according to length.

-~

String features

For some A > 0 (the choice A = .5 seems pretty common) give matching
substring 8" = s;;5;, - - - 5;, weight

Document /i (represented by string s;) gets value of feature

_ bi—H-F1
xjp=), A

Sily Sily ***Silp =M,

It further seems common to normalize the rows of X by the usual
Euclidean norm, producing in place of x;; the value

X if

x|

(l .
Inner products for string feature vectors

These features or normalized features are attractive, but potentially
computationally prohibitive, particularly since the "interesting set" of
strings {4 is often taken to be .4”. One doesn’t want to have to compute
all these features directly and then operate with the very large matrix X.
But XX’ is required to find principal components of the features (or to
define SVM classifiers or any other classifiers or clustering algorithms
based on principal components). So if there is a way to efficiently
compute or approximate inner products for rows of X defined by the
unnormalized features, namely

(x.T X'r> T /\l'ln_!rl‘f‘l Amn—mﬁ—l
| ; Z z Si"mlsf’ Z

uc A" \siy Silpy Sl = my " Si'mp

it might be possible to employ this idea.

Inner products for string features

And if the inner products (x;, X;;) can be computed efficiently, then so can
the inner products

< 1 1 > (X;‘,X_;f)
X/, Xjr) =
[[xif| " [] v (Xi Xi) (Xir, Xi1)

needed to employ XX’ for the normalized features.

g
String kernels

It Is common to call the function of documents s and t defined by

K (S, t) — Z E E A:’n—-"l—mn—ml—i—2

UEAH SJrleQ"'an:u tml tmz"'fmn:u

the String Subsequence Kernel and then call the matrix XX’ =
((xj,x;)) = (K (sj,s;)) the Gram matrix for that "kernel."

The good news is that there are fairly simple recursive methods for
computing K (s, t) exactly in O (n|s||t|) time and that there are
approximations that are even faster (see the 2002 Journal of Machine
Learning Research paper of Lodhi et al.). That makes the implicit use of
the features or normalized features possible in many text processing
problems.

