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A more general theory

Some more general prediction theory begins with C a compact subset of
RP and a symmetric kernel function

K : &% i€ — %

Ultimately, we will consider as predictors for x € C related to linear
combinations of sections of the kernel function, YV, b;K (x, X;) (where
the x; are the input vectors in the training set). To get there in a
semi-rational way, and to incorporate use of a complexity penalty into the
fitting, one restricts attention to kernels that have nice properties. In
particular, we suppose that K is continuous.
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A rough outline

These slides present a version of this material that is largely correct, but
logically incomplete and not indicative of how a careful exposition must
go. Refer to the typed course notes for a more careful and complete story
that involves "Mercer's Theorem" and (L,) "eigenfunctions" of the kernel.

Consider a linear space of functions .4 (a subset of the square integrable
functions on C) consisting (roughly) of those of the form

Fix) = i K%, z;)

for countable subsets {z;} C C (assuming proper convergence of this
form). Define an inner product on A (for f (x) = Y_;2; biK (x,2;) and
g (x) = LiZ1 6K (x,z;)) by

<f‘g>A == i i b,‘CjK: (Z,', ZJ,')

=1 j=1




Representer of evaluation and reproducing kernel

From the form of the inner product, with 7 (x) = Y72, b;K (x,z;) and a
z € C (it's no loss of generality to assume that z is some z; defining f)

(f, K (- ibi |[z) =2z] K z,z)—ZbK (z;,2) = f (2)

=1 =1 =

and K (-, z) is the representer of function evaluation in A.
The fact that then

(K (-i%) , K (-2)) = K [x2Z)

Is the reproducing kernel property.
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A function optimization problem

For applying this material to the fitting of training data, for A > 0 and a
loss function L (y,y) > 0 define an optimization criterion

N
. . . L rrf r A f 2 1
minimize (;1: (vi, £ (xi)) +A| |,4) (1)

As it turns out, an optimizer of this criterion must (for the training vectors

{x;}) be of the form
N
F i) = ; b K. (%, %;) (2)

and the corresponding H ?Hil Is then

N N

<1?'F ?)A = Z Z b,‘ij: (xi, xf)

=1 j=1




Rewriting the optimization criterion
The criterion (1) is thus

minimize (ZL (y; Zb}\ %s, xj)) +Ab’ (K (xI.ij))b) (3)

N
bER j=1

Letting K = (K (x;,%;)) and defining

YKb)ZL( i x,xj)

the optimization criterion (3) is thus

minimize (Ly (Y, Kb) + Ab’Kb)
ber"




Rewriting the optimization criterion cont.

Letting P = K™ (a symmetric generalized inverse of K) the criterion is

minimize (Ly (Y, Kb) + Ab’K'PKb)
ber"

l.e.

inimize (Ly (Y \W'P -
e (b (Y- + AVPY) *

That is, the function space optimization problem (1) reduces to the
N-dimensional optimization problem (4). A v, € C (K) (the column
space of K) minimizing Ly (Y,v) + Av'Pv corresponds to by minimizing
Ly (Y,Kb) + Ab'Kb via

Kby = v, (5)




The SEL problem

For the particular special case of squared error loss, L(y,y) = (v — )",
this development has a very explicit punch line. That is,

Ly (Y,Kb) +Ab’Kb = (Y — Kb)' (Y — Kb) + Ab’Kb
Some vector calculus shows that this is minimized over choices of b by
by = (K+ATY (6)
and corresponding fitted values are
Yy=vi=K(K+AN'Y

Then using (6) under squared error loss, the solution to (1) is from (2)

N
i (%) = Z by K (%, %;) (7)




The most general problem

CFZ provide a result summarizing the most general available version of
this development, known as " The Representer Theorem." It says that If
() : [0,00) — Ris strictly increasing and

L((x1,y1,h(x1)),...,(xn, yn, h(xn))) >0

Is an arbitrary loss function associated with the prediction of each y; as
h(x;), then an h € A minimizing

L((x1,y1.h(x1)).(x2.y2,h(x2))...., (Xnoyv, h(xn))) + (A 4)

has a representation as
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Unpenalized components

Further, if {11, ¢o,... ¢} is a set of real-valued functions and the
N x M matrix (; (x;))is of rank M, then for hy €span{yn, s, ..., Y }
and h; € A, an h = hg + h; minimizing

L((x1,y1,h(x1)), (x2,2,h(x2)),..., (xn, yno b (xn))) + Q([[he]] 4)
has a representation as

M N
(%) = Za'j-tpj (X} <+ Z Bi K. (%,%;)
f=j =1

The important generality provided above is that linear combinations of the
functions ; (x) go unpenalized in fitting.




SEL implications
Then for the SEL case, take

and

R = (1% [¥F) ¥V
An optimizing « is & = (‘f"‘f)_l Y'Y where BA optimizes
(R—KB) (R—KB) + ABKB

and the earlier argument implies that BA = K 4 M)_l R.




