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Bayes modeling

This is application of Bayesian thinking to SEL prediction, based the use
of a Gaussian process as a "prior distribution" for (the function of x)
Ely|x]. Suppose

y=1n(x)+e
where

7(x) = p(x)+7(x)

Ee = 0, Vare = ¢, the function 1 (x) is known (it could be identically 0)
and plays the role of a prior mean for the function (of x)

7 (x) = Elylx

and (independent of errors €), 7y (X) is a realization of a mean 0 stationary
Gaussian process on R” describing the prior uncertainty for 17 (x).




l Gaussian processes and correlation functions =~

More completely, 7y (x) has E7 (x) = 0 and Var7y (x) = 12 for all x, and
for some appropriate (correlation) function p, Cov(7y (x),v(z))

= 120 (x —z) for all x and z (0 (0) = 1 and the function of two variables
p (x —z) must be positive definite). The Gaussian assumption is that for
any finite set of elements z1, 2>, ..., 2y of RP, the vector of values v (z;)
Is multivariate normal.

The simplest standard forms for p are product forms, L.e. If p; is a valid
1-D correlation function, then

p(x—2z)= ]_:[F’j (% — z)

Is a valid correlation function for a process on R”. Standard 1-D

correlation functions are p (A) = exp (—cA?) and p (A) = exp (—c|A|).

The first produces "smoother" realizations than the second, and in both

|l cases, the constant ¢ governs how fast realizations vary. g




MVN distribution

Then the joint distribution (conditional on the x; and assuming that for
the training values y; the €; are iid independent of the 7 (x;)) of the
training output values and a value of j1 (x) can be identified and used to

find a conditional mean for # (x) given the training data. Let
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Conditional mean and a predictor

The conditional mean of # (x) given Y is then

L w—R (x1)
F(x)=p(x)+Z(x) (Z+01)" '

YN — M (Xn)

. (z+[r2|)1( y1—;:£(xl) )
o J/m—}f(xw)

and then (1) implies that

Write

N
f(x)=u(x)+ Z w;T20 (x — X;)
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Posterior mean and RKHSs

So this development ultimately produces 1 (x) plus a linear combination of
the "basis functions" 720 (x — X;) as a predictor. Remembering that

720 (x — z) must be positive definite and seeing the ultimate form of the
predictor, we are reminded of the RKHS material.

In fact, consider the case where j1 (x) = 0. (If one has some non-zero
prior mean for 1 (x), arguably that mean function should be subtracted
from the raw training outputs before beginning the development of a
predictor. At a minimum, output values should probably be centered
before attempting development of a predictor.) Compare (2) and (3) to
by = (K+ADT 'Y and A (x) = Y™, by K (x, x;) for the 1 (x) = 0 case.
So the present "Bayes" Gaussian process development of a predictor under
squared error loss based on a covariance function 720 (x — z) and error

2 is equivalent to a RKHS regularized fit of a function to training

data based on a kernel K (x,z) = 72p (x — z) and penalty weight A = 2.
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