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Centroid-based methods

By far the most commonly used clustering methods are based on
partitioning related to "centroids," particularly the so called "K-Means"
clustering algorithm for the rows of X in cases where the columns contain
values of continuous variables x; (for which arithmetic averaging makes
sense). (In this context, a natural choice of d (x,z) is ||x — z||>. A fancier
option might be built on squared Mahalanobis distance, (x — Z)Fr Q(x—2z)

for some non-negative definite Q.)




A first iteration of the K-means algorithm

The algorithm begins with some set of K distinct "centers" c?, cg ..... c?{.

They might, for example, be a random selection of the rows of X (subject

to the constraint that they are distinct). One then assigns each x; to that
center C?fﬂ(f} minimizing
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d (Xf- c/)

over choice of / (creating K clusters around the centers). One then
replaces all of the c?{ with the corresponding cluster means
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m-th iteration of the K-means algorithm

At stage m with all C?_l available, one then assigns each x; to that center

m—1 o T
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d (X;'* C;n—l)

over choice of / (creating K clusters around the centers) and replaces all
of the c}(”_l with the corresponding cluster means

il
# of i with km=1(j) =k ZI [

€ =

km—l(‘;) e k} X;

This iteration goes on to convergence.




Multiple starts and comparison across K

One compares multiple random starts for a given K (and then minimum
values found for each K) in terms of

K
Total Within-Cluster Dissimilarity (K) = ) Y,  d(%.c)

k=1 X; in cluster k

for c1,co,..., Cx the final means produced by the iterations. (For a
squared Euclidean distance d, this is a total squared distance of x;s to
their corresponding cluster means.)

One may then consider the monotone sequence of Total Within-Cluster
Dissimilarities and try to identify a value K beyond which there seem to be
diminishing returns for increased K.
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A first iteration of a K-mediods algorithm

A more general version of this algorithm (a "K-medoid" algorithm)
doesn’t require that the entries of the x; be values of continuous variables,
but (since it is then unclear that one can even evaluate, let alone find a
general minimizer of, d (x;, +)) restricts the "centers" to be original items.

This algorithm begins with some set of K distinct "medoids"
c?, cg, e c?{ that are a random selection from the r items X; (subject to
the constraint that they are distinct). One then assigns each x; to that
medoid cgﬂm minimizing
d (xi.c})

over choice of / (creating K clusters associated with the medoids) and
replaces all of the CE with c}( the minimizers over the x;» belonging to
cluster k of the sums

Z d (X,’, X;f)

i with k9(i)=k
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m-th iteration of the K-medoids algorithm
At stage m with all cf_l available, one then assigns each x; to that

E m—1
medoid Cm—1(;)

minimizing
m—1
d (ez,67 )
over choice of | (creating K clusters) and replaces the cf_l with ¢’ the

minimizers over the x;; belonging to cluster k of the sums
Z d (X;‘, Xff)
i with km=1(j)=k

This iteration goes on to convergence. One compares multiple random
starts for a given K (and then minimum values found for K) in terms of
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for c1,Co, ..., cx the final medoids produced by the iterations.




